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1. Automated Outbreak Detection as Binary Classification

“Are there too many cases, here and now, compared with expectations?”

One standard approach: Univariate time series + Regression + Confidence Interval

For example:
farringtonFlexible (from R-package surveillance), used here for benchmarking

Noufaily et al (2013) Statistics in Medicine 32(7) 1206 http://doi.org/10.1002/sim.5595

Salmon et al (2016) Journal of Statistical Software 70(10) http://doi.org/10.18637/jss.v070.i10
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label 4 = week with outbreak

signal 4 =
1 - P-value("no outbreak") >
cut-off

Idea 1: learn what’s an outbreak from the labels

Idea 2: evaluate how good the signals are:
- signal & week with outbreak = true positive TP
- signal & week without outbreak = false positive FP
- no signal & week without outbreak = true negative TN
- no signal & week with outbreak = false negative FN
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2. Outbreak Labels: Statistical Description
In Germany:
Outbreaks are reported, individual infection cases are labelled with an outbreak ID

Reported outbreaks for food-borne diseases are particularly reliable:
campylobacteriosis and salmonellosis

Size of outbreaks:
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Outbreaks are typically small, local, short lived =⇒ point detection might be OK

https://www.rki.de/DE/Content/Infekt/Jahrbuch/Jahrbuch_2017.pdf?__blob=publicationFile
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Weekly incidences relative to 13-weeks window (only weeks with cases)
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on average: outbreaks are additional cases. . . but many outbreaks are subcritical

simple univariate methods might not work well. . . let’s use the outbreak information!
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3. Supervised Learning: Two Simple Approaches

1. farringtonOutbreak

farringtonFlexible but outbreak cases removed from training

cut-off on 1 - P-value(“no outbreak”)

2. hmmOutbreak

- hidden state st ∈ {0, 1} (= 1 if outbreak in week t, else = 0 )

- transition probabilities aij =
∑

t δi st−1δj st /
∑

t δi st−1

- emission function ct ∼ ψ NegBin with

logµt = β0 +
∑3

i=1 βi t i + β4 cos
(
2π
52 t
)

+ β5 sin
(
2π
52 t
)

+ β6 st ,

and constant over-dispersion

- posterior outbreak probability (one-week ahead: one-step forward algorithm)

pt = ast−11 · ψ(ct ; st = 1, t)/
∑

i=0,1 ast−1 i · ψ(ct ; st = i , t)

- cut-off on pt
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farringtonFlexible, farringtonOutbreak, hmmOutbreak
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4. Evaluating and Comparing Algorithms

• Data:

weekly reported infection cases and outbreaks for notifiable diseases in Germany

1 time series for each county

with frequency of weeks with outbreaks between 2% and 98%

time range 2009-2017 = 8 years

• Training and test sets = 5 years + 1 week

training = 5 years

test on next week (prospective 1 week ahead: data available until last week)

• Scores = functions of TP, FP, TN, FN

sensitivity, specificity, precision, F1. . .

Enki et al (2016) PLOS ONE 11(8) e0160759 http://doi.org/10.1371/journal.pone.0160759

Bédubourg, Le Strat (2017) PLOS ONE 12(7) e0181227 http://doi.org/10.1371/journal.pone.0181227

Hoffmann, Dreesman (2010) PAE-project report, Niedersächsische Landesgesundheitsamt (NLGA) / ESCAIDE poster

Ghozzi, Ullrich, in preparation
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Evaluation 1: with varying cut-off

ROC curve (sensitivity vs. 1-specificity): sensitivity = TP/(TP + FN), specificity = TN/(TN + FP)
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Evaluation 2:
cut-offs set so that specificity = 0.9 on each time series (and overall as well)

sensitivity
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precision
= TP/(TP + TF )
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F1 score
= 2TP/(2TP + FP + FN)
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distributions with 25th, 50th and 75th percentiles; • = mean, N = overall
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Dynamical properties can be inferred from hmmOutbreak, for example:

Outbreak weight β6 (weeks with outbreaks have eβ6 more cases):

Campylobacteriosis
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For campylobacteriosis:
- weeks with outbreaks indeed have significantly more cases
- on average e0.5 ≈ 1.6 more cases in outbreak weeks, all other things equal
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5. Conclusion and Outlook

• supervised learning is a promising venue for outbreak detection!

- labelled data are available

- simple HMM more transparent (explicit proba) and performs better

• account for delays in reporting and labelling

• hyper-parameter optimisation + stacking (combine algorithms)

=⇒ Framework for machine learning:

I devise, optimise, combine algorithms based on expert knowledge
I integrate continuous user feedback: signal evaluation, reinforcement learning
I towards a standard data set (with labels) for outbreak detection

Ghozzi, Ullrich, in preparation

Zacher, Czogiel, in preparation

Busche, Ullrich, Ghozzi, in preparation
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Thank you!

see also talk

“Dashboards as strategy to integrate multiple data streams for real time surveillance”

by Alexander Ullrich

Friday, Feb. 1, 2019 / 10:00 am / Rio Vista F room

signale@rki.de

rki.de/signale-project
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