Supervised Learning for Automated Infectious-Disease-Outbreak Detection

ISDS Conference 2019 San Diego, 29 January 2019

Benedikt Zacher, Alexander Ullrich, Stéphane Ghozzi

Robert Koch Institute, Germany ghozzis@rki.de

Outline

1. Outbreak Detection as Binary Classification

2. Outbreak Labels: Statistical Description

3. Supervised Learning: Two Simple Approaches

4. Evaluating and Comparing Algorithms

5. Conclusion and Outlook

1. Automated Outbreak Detection as Binary Classification

"Are there too many cases, here and now, compared with expectations?"

One standard approach: Univariate time series + Regression + Confidence Interval

For example: farringtonFlexible (from R-package surveillance), used here for benchmarking

Noufaily et al (2013) Statistics in Medicine 32(7) 1206 http://doi.org/10.1002/sim.5595

Salmon et al (2016) Journal of Statistical Software 70(10) http://doi.org/10.18637/jss.v070.i10

label \triangle = week with outbreak

signal $\triangle =$ 1 - P-value("no outbreak") > cut-off

Idea 1: learn what's an outbreak from the labels

Idea 2: evaluate how good the signals are:

- signal & week with outbreak = true positive $\ensuremath{\text{TP}}$
- signal & week without outbreak = false positive $\ensuremath{\text{FP}}$
- no signal & week without outbreak = true negative $\ensuremath{\text{TN}}$
- no signal & week with outbreak = false negative $\ensuremath{\text{FN}}$

2. Outbreak Labels: Statistical Description

In Germany:

Outbreaks are reported, individual infection cases are labelled with an outbreak ID

Reported outbreaks for food-borne diseases are particularly reliable: campylobacteriosis and salmonellosis

Outbreaks are typically small, local, short lived \Longrightarrow point detection might be OK

https://www.rki.de/DE/Content/Infekt/Jahrbuch/Jahrbuch_2017.pdf?__blob=publicationFile

Weekly incidences relative to 13-weeks window (only weeks with cases)

on average: outbreaks are additional cases... but *many* outbreaks are subcritical simple univariate methods might not work well... let's use the outbreak information!

3. Supervised Learning: Two Simple Approaches

1. farringtonOutbreak

farringtonFlexible but outbreak cases removed from training **cut-off** on 1 - P-value("no outbreak")

2. hmmOutbreak

- hidden state $s_t \in \{0,1\}$ (= 1 if outbreak in week t, else = 0)
- transition probabilities ${\it a}_{ij} = \sum_t \delta_{i\,s_{t-1}} \delta_{j\,s_t} / \sum_t \delta_{i\,s_{t-1}}$
- emission function $c_t \sim \psi$ NegBin with

$$\log \mu_t = \beta_0 + \sum_{i=1}^3 \beta_i t^i + \beta_4 \cos\left(\frac{2\pi}{52}t\right) + \beta_5 \sin\left(\frac{2\pi}{52}t\right) + \beta_6 s_t,$$

and constant over-dispersion

- posterior outbreak probability (one-week ahead: one-step forward algorithm)

$$p_t = a_{s_{t-1}1} \cdot \psi(c_t; s_t = 1, t) / \sum_{i=0,1} a_{s_{t-1}i} \cdot \psi(c_t; s_t = i, t)$$

- cut-off on pt

farringtonFlexible, farringtonOutbreak, hmmOutbreak

4. Evaluating and Comparing Algorithms

• Data:

weekly reported infection cases and outbreaks for notifiable diseases in Germany

1 time series for each county

with frequency of weeks with outbreaks between 2% and 98%

time range 2009-2017 = 8 years

• Training and test sets = 5 years + 1 week

training = 5 years

test on next week (prospective 1 week ahead: data available until last week)

• Scores = functions of TP, FP, TN, FN

sensitivity, specificity, precision, F1...

Enki et al (2016) PLOS ONE 11(8) e0160759 http://doi.org/10.1371/journal.pone.0160759 Bédubourg, Le Strat (2017) PLOS ONE 12(7) e0181227 http://doi.org/10.1371/journal.pone.0181227 Hoffmann, Dreesman (2010) PAE-project report, Niedersächsische Landesgesundheitsamt (NLGA) / ESCAIDE poster Ghozzi, Ullrich, in preparation

Evaluation 1: with varying cut-off

ROC curve (sensitivity vs. 1-specificity): sensitivity = TP/(TP + FN), specificity = TN/(TN + FP)

farringtonFlexible, farringtonOutbreak, hmmOutbreak

Evaluation 2: cut-offs set so that specificity = 0.9 on each time series (and overall as well)

farringtonFlexible, farringtonOutbreak, hmmOutbreak

distributions with 25th, 50th and 75th percentiles; ● = mean, ▲ = overall

Dynamical properties can be inferred from hmmOutbreak, for example:

Outbreak weight β_6 (weeks with outbreaks have e^{β_6} more cases):

Simulations

Campylobacteriosis

For campylobacteriosis:

- weeks with outbreaks indeed have significantly more cases
- on average $e^{0.5} pprox 1.6$ more cases in outbreak weeks, all other things equal

5. Conclusion and Outlook

- supervised learning is a promising venue for outbreak detection!
 - labelled data are available
 - simple HMM more transparent (explicit proba) and performs better
- account for delays in reporting and labelling
- hyper-parameter optimisation + stacking (combine algorithms)
- \implies Framework for machine learning:
 - devise, optimise, combine algorithms based on expert knowledge
 - ▶ integrate continuous user feedback: signal evaluation, reinforcement learning
 - towards a standard data set (with labels) for outbreak detection

Ghozzi, Ullrich, in preparation Zacher, Czogiel, in preparation Busche, Ullrich, Ghozzi, in preparation

Thank you!

see also talk

"Dashboards as strategy to integrate multiple data streams for real time surveillance"

by Alexander Ullrich

Friday, Feb. 1, 2019 / 10:00 am / Rio Vista F room

signale@rki.de

rki.de/signale-project