WHO Outbreak Toolkit Virtual Assistant

WHO, 16 October 2019

Lucas Deroo, Stéphane Ghozzi, Anne Perrocheau, Karl Schenkel

WHO/WHE/HIM/MDC

ghozzis@who.int / ghozzis@rki.de

Outline

1. Overview

2. Input: Data dictionary, references and line lists

3. Score

- 4. Dimensionality reduction
- 5. Web application
- 6. Conclusion and outlook

1. Overview

Objective

Outbreak of unknown origin... Help formulating hypotheses on disease

Inspiration

Election online helper: Which party is closest to you?

Approach

Use expected answers for diseases of interest = references

Compare cases with expectations

Workflow

Input:

- 1. data dictionary
- 2. references
- 3. filled line lists

Output:

- 1. 2d visualisation of cases and references
- 2. scores = similarity between cases and references

2. Input: Data dictionary, references and line lists

Data dictionary

Data dictionary = T0 and T1 questionnaires, i.e. not disease specific

Remove free text and other variables that can't be used here: 117 variables left

name	label	type	format	values	multiplicity
report_date	Date case was reported (DD. *	date	YYYY-MM-DD	NA	0
notification_facility_type	Case reported by:	int_categorical	NA	0=unknown;1=mobileteam;2=e	0
birth_date	Date of birth (DD/MM/YYYY):	date	YYYY-MM-DD	NA	0
age_year	Age at onset: years	int_ordinal	NA	0, 99	0
sex	Male Female	int_categorical	NA	1=male;2=female	0
occupation_hcw	Works in health facility:	int_categorical	NA	0=unknown;1=yes;2=no	0
gps_lat	GPS latitude:	float	point_decimal_no_grouping	-180, 180	0
gps_long	GPS longitude:	float	point_decimal_no_grouping	-180, 180	0
mass_gathering_yn	Did you participate in mass gav	int_categorical	NA	0=unknown;1=yes;2=no	0
mass_gathering_date	Date (DD/MM/YYYY):	date	YYYY-MM-DD	NA	1
no_hhd	How many household member	int_ordinal	NA	0, 100	0
sick_hhd_yn	Do you have any household n*	int_categorical	NA	0=unknown;1=yes;2=no	0
sick_hhd_onset	date of onset (DD/MM/YYYY)	date	YYYY-MM-DD	NA	1
sick_comm_yn	Are you aware of people outsit	int_categorical	NA	0=unknown;1=yes;2=no	0
sick_comm_relat	Relationship	int_categorical	NA	1=friend;2=workmate;3=relativ	1
sick_comm_onset	date of onset (DD/MM/YYYY)	date	YYYY-MM-DD	NA	0
contact_sym_yn	Did you had any contacts wi	int_categorical	NA	0=unknown;1=yes;2=no	0
contact_sym_date	Date of last contact (DD/MM/Y	date	YYYY-MM-DD	NA	0
ravel_hist_yn	Did you travel, outside your re*	int_categorical	NA	0=unknown;1=yes;2=no	0
travel_hist_date	Traveling Date (DD/MM/YYY)	date	YYYY-MM-DD	NA	1

References

For each disease: Reference = Variable name, weight, observations, extension

weight = how indicative of the disease

observations = range of expected answers

extension = expected 50% confidence interval of answers [optional]

name	weight	observations	extension
report_date	0	NA	252
notification_facility_type	0.5	1, 4	NA
birth_date	0	NA	9
age_year	1	49, 97	45
sex	0.5	1	NA
occupation_hcw	1	1	NA
gps_lat	1	2.78, 165.12	69.16
gps_long	1	91.61, 136.61	35.26
mass_gathering_yn	1	2	NA
mass_gathering_date	0	NA	344
no_hhd	0	32, 88	26

5 fake random references

Blue Fever, Danger Fever, Kleptospirosis, Viral Hepatitis Z, West Rhine Virus

5 real references: rough estimates

Hepatitis A, Hepatitis E, Leptospirosis, Mushroom, Yellow Fever

Line lists (events)

Generate synthetic events:

- 1. completely random cases
- 2. all cases drawn randomly from 1 disease reference
- 3. all cases from $1\ disease$ but with noise
- 4. cases from 2 diseases (half/half)
- 5. cases from 2 diseases (half/half), with noise

with noise = 50% of variables of any one case are completely random

case_id	report_date	notification_f*	birth_date	age_year	sex	occupation_h	gps_lat	gps_long	mass_gatheri	mass_gatheri
danger_fever_event_1	2015-02-05	4	2018-08-20	54	2	1	-10.561609198	-118.40378069	2	2017-09-13
danger_fever_event_2	2019-09-01	4	2017-12-21	47	2	1	-16.694285074	-62.322222565	2	2015-08-08
danger_fever_event_3	2019-04-22	1	2015-02-11	44	2	1	6.1287991879	-102.70033583	2	2015-09-04, 20
danger_fever_event_4	2019-10-18	1	2015-06-10	44	2	1	1.6473386705	-100.35858407	2	2016-05-15, 20
danger_fever_event_5	2018-07-12	4	2017-12-24	43	2	1	-18.524208949	-40.380729289	2	2015-01-04, 20
danger_fever_event_6	2018-12-01	4	2018-10-24	58	2	1	-6.7130254994	-127.62705966	2	2017-01-02, 20
danger_fever_event_7	2017-05-14	1	2016-05-25	64	2	1	32.523126923	-140.13485732	2	2015-05-30, 20
danger_fever_event_8	2016-01-02	1	2017-05-17	44	2	1	-21.088938099	-19.647448508	2	2018-02-26
danger_fever_event_9	2018-01-03	1	2018-04-11	44	2	1	-7.3504254324	-112.05122689	2	2018-03-15, 20
danger_fever_event_10	2019-09-15	3	2015-10-15	59	2	1	-20.667682803	48.591987626	2	2015-10-22, 20
danger_fever_event_11	2015-08-23	4	2017-07-22	55	2	1	-15.869003509	-137.3709156	2	2016-03-16, 20
danger_fever_event_12	2015-05-25	3	2017-07-31	44	2	1	5.0164222981	-106.83533791	2	2015-07-01

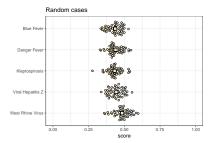
3. Score

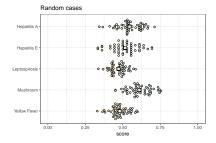
1 score for each case and each reference = how similar is this case to the reference?

For each variable:

- answer within range or set of reference observations: +1
- missing answer or "unknown": +0.5
- answer outside of reference observations: +0

Score = weighted average over variables using the reference weights

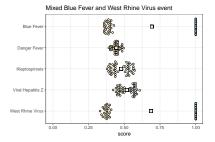

(extension not used at the moment for scoring)

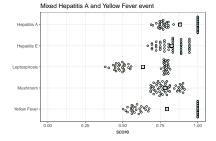

 $\begin{array}{l} \mbox{Case}\sim\mbox{reference}\ \rightarrow\ s\mbox{core}\ =\ 1\\ \mbox{Case}\ outside\ reference\ \rightarrow\ s\mbox{core}\ =\ 0\\ \mbox{Random case}\ \rightarrow\ s\mbox{core}\ \approx\ 0.5 \end{array}$

Tested 5 types of events for 2 sets of references = 10 scenarios

Scores: Random cases

fake references

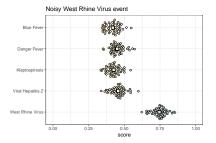


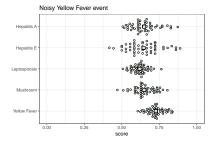


1 dot = 1 case / square = average

Scores: Cases from 2 diseases

fake references

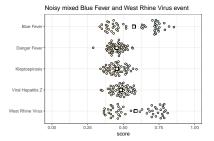


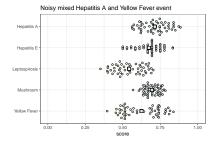


1 dot = 1 case / square = average

Scores: Cases from 1 disease with noise

fake references





1 dot = 1 case / square = average

Scores: Cases from 2 diseases with noise

fake references

1 dot = 1 case / square = average

4. Dimensionality reduction

Reduce dimensionality form 117 to 2 using the t-SNE algorithm

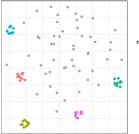
Needs a **distance** between cases: similar approach and difficulties as for score

With d_{ii} the distance between case i and case j, and w_V the weight for variable v averaged over all references:

$$d_{ij} = \sqrt{\sum_{v} w_{v} d_{ijv}^{2} / \sum_{v} w_{v}}$$

with

 $\begin{array}{l} d_{ijv} = \min_{m,n} |v_{im} - v_{jn}| / \max_{i,j}(\min_{m,n} |v_{im} - v_{jn}|) \text{ if variable is int_ordinal, float or date} \\ d_{ijv} = 1 - \delta(|\{v_{im}\}_m \cap \{v_{jn}\}_n|) \text{ if variable is int_categorical} \\ d_{ijv} = 0.5 \text{ if any answer is missing} \end{array}$

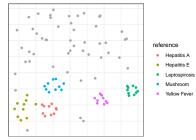

where v_{im} is the *m*-th observation of variable *v* for case *i*, and $\delta(x) = 0$ if x = 0, 1 else.

Smallest distance is 0 and largest distance is 1

Include reference cases for comparison

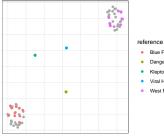
2d projection: Random cases

fake references


Random cases

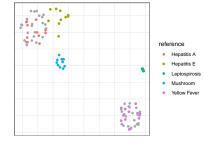
reference

- Blue Fever
- Danger Fever
- Kleptospirosis
- Viral Hepatitis Z
- West Rhine Virus


real references

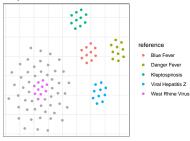
Random cases

2d projection: Cases from 2 diseases

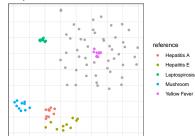

fake references

Mixed Blue Fever and West Rhine Virus event

- Blue Fever
- Danger Fever
- Kleptospirosis
- Viral Hepatitis Z
- West Rhine Virus

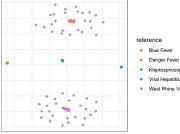

real references

Mixed Hepatitis A and Yellow Fever event


2d projection: Cases from 1 disease with noise

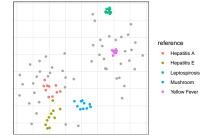
fake references

Noisy West Rhine Virus event


real references

Noisy Yellow Fever event

2d projection: Cases from 2 diseases with noise


fake references

Noisy mixed Blue Fever and West Rhine Virus event

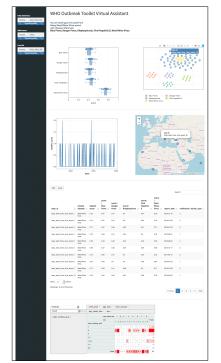
- Kleptospirosis
- Viral Hepatitis Z
- West Rhine Virus

real references

Noisy mixed Hepatitis A and Yellow Fever event

5. Web application

R Shiny prototype


Input: upload data dictionary, set of references and 1 line list Output: scores, 2d projection, epicurve, map, line list, pivot table

Installation:

local at the moment

WHO cloud (internal) or online (public) in the future

Deta dictionary Browse dots_dictionary. Uptinel complete References Browse 5 files Uptinel complete	You are looking at the cases Noisy West Rhine Virus eve with disease references	k Toolkit Virtual Assistan ^{from} nt Jeptospirosis, Viral Hepatitis Z, West Rhine Vi	
Line list			0 Q + E P B B X # 7 = = 🜌
Browse Noisy_West_Phi Upload complete	Blue Fever-		
	Danger Fever-		ိ ွိ ွိ ွိ ွိ ွိ ွိ ွ
	Kleptospirosis -		
	Viral Hepatitis Z -	H H	
	West Rhine Virus-	H	Blue Fever Danger Fever Kiteotoscirosis Virei Hosatilis Z
	ů 0.	2 0.4 0.6 0.8 1 score	West Rhine Virus

6. Conclusion and outlook

Conclusion

Already simple approaches are promising and deliver useful insights

2d visualisation: discriminates better scores: single number per case / for the whole event

Usefulness for potential users can be probed: Are the functionalities interesting?

What's next? 2 possible directions

1. Improve and evaluate method

- computation time
- distinguish between suspected, confirmed and excluded cases
- find real line lists and convert to data-dictionary format
- evaluate the tool
- establish the reference for each epidemic prone disease
- machine learning (classification)

Resources needed: at least 1 data scientist & 1 medical expert

2. Prospective piloting

- build as software or integrate in other tools (Go.Data?)
- feasibility study needed

Resources needed: at least 1 software engineer

Ideas for collaborations:

- make an R package and share it with community, e.g. RECON
- Cambridge working group on same topic
- WHO Medical expert group, Antwerp (medical experts), READY project (USAIDS), RKI

Thank you!

Advertisement:

Anomaly detection for EIOS Machine learning and natural language processing to detect signals in stream of articles

Signale team at the Robert Koch Institute data science for infectious-disease epidemiology rki.de/signale-project