Machine-Learning Approaches to Signal Detection in Infectious-Disease Epidemiology

Workshop on Infectious Disease Surveillance
University of Bern, 25 November 2019

Auss Abbood, Rüdiger Busche, Stéphane Ghozzi, Alexander Ullrich

Signale / Robert Koch Institute, Germany ghozzis@rki.de

Outline

1. ML for Indicator-Based Surveillance

1.1. Outbreak detection as binary classification
1.2. Outbreak labels: statistical description
1.3. Supervised learning: two simple approaches
1.4. Evaluating and comparing algorithms
1.5. Hyperparameter optimisation
1.6. IBS: Conclusion and outlook

2. ML for Event-Based Surveillance

2.1. A labeled dataset
2.2. Data processing
2.3. Data exploration
2.4. Different approaches
2.5. Classification performances
2.6. EBS: Conclusion and outlook
3. Bonus: Interactive Reports and Websites
4. Conclusion

Supplementary Information

1. ML for Indicator-Based Surveillance

1.1. Automated outbreak detection as binary classification

"Are there too many cases, here and now, compared with expectations?"

One standard approach: Univariate time series + Regression + Confidence Interval

For example:
farringtonFlexible (from R-package surveillance), used here for benchmarking

[^0]

label \triangle = week with outbreak
signal $\triangle=$
1 - P-value("no outbreak") > cut-off

Idea 1: learn what's an outbreak from the labels
Idea 2: evaluate how good the signals are:

- signal \& week with outbreak = true positive TP
- signal \& week without outbreak $=$ false positive FP
- no signal \& week without outbreak = true negative TN
- no signal \& week with outbreak = false negative FN

1.2. Outbreak labels: statistical description

In Germany:
Outbreaks are reported, individual infection cases are labelled with an outbreak ID

Reported outbreaks for food-borne diseases are particularly reliable: campylobacteriosis and salmonellosis

Size of outbreaks:

Extent of outbreaks:

Duration of outbreaks:

Outbreaks are typically small, local, short lived \Longrightarrow point detection might be OK

Weekly incidences relative to 13 -weeks window (only weeks with cases)

on average: outbreaks are additional cases... but many outbreaks are subcritical simple univariate methods might not work well... let's use the outbreak information!
3. Supervised learning: two simple approaches

1. farringtonOutbreak

farringtonFlexible but outbreak cases removed from training
cut-off on 1 - P-value("no outbreak")

2. hmmOutbreak

- hidden state $s_{t} \in\{0,1\}$ ($=1$ if outbreak in week t, else $=0$)
- transition probabilities $a_{i j}=\sum_{t} \delta_{i s_{t-1}} \delta_{j} / \sum_{t} \delta_{i s_{t-1}}$
- emission function $c_{t} \sim \psi$ NegBin with

$$
\log \mu_{t}=\beta_{0}+\sum_{i=1}^{3} \beta_{i} t^{i}+\beta_{4} \cos \left(\frac{2 \pi}{52} t\right)+\beta_{5} \sin \left(\frac{2 \pi}{52} t\right)+\beta_{6} s_{t},
$$

and constant over-dispersion

- posterior outbreak probability (one-week ahead: one-step forward algorithm)

$$
p_{t}=a_{s_{t-1} 1} \cdot \psi\left(c_{t} ; s_{t}=1, t\right) / \sum_{i=0,1} a_{s_{t-1} i} \cdot \psi\left(c_{t} ; s_{t}=i, t\right)
$$

- cut-off on p_{t}

farringtonFlexible, farringtonOutbreak, hmmOutbreak

1.4. Evaluating and comparing algorithms

- Data:
weekly reported infection cases and outbreaks for notifiable diseases in Germany
1 time series for each county
with frequency of weeks with outbreaks between 2% and 98%
time range 2009-2017 $=8$ years
- Training and test sets $=5$ years +1 week
training $=5$ years
test on next week (prospective 1 week ahead: data available until last week)
- Scores $=$ functions of TP, FP, TN, FN sensitivity, specificity, precision, F1...

[^1]
Evaluation 1: with varying cut-off

ROC curve (sensitivity vs. 1-specificity): sensitivity $=T P /(T P+F N)$, specificity $=T N /(T N+F P)$

farringtonFlexible, farringtonOutbreak, hmmOutbreak

Evaluation 2:

cut-offs set so that specificity $=0.9$ on each time series (and overall as well)

sensitivity

$$
\begin{aligned}
& \text { precision } \\
& =\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})
\end{aligned}
$$

F1 score

$$
=2 \mathrm{TP} /(2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN})
$$

farringtonFlexible, farringtonOutbreak, hmmOutbreak
distributions with 25th, 50th and 75th percentiles; $\bullet=$ mean, $\mathbf{\Delta}=$ overall

1.5. Hyperparameter optimisation

Find parameters that maximise score function

Here:

- Weighted Matthews Correlation Coefficient (weight = weekly count)
- time-dependency of dataset taken into account

$\mathrm{MCC}=(\mathrm{TP} \cdot \mathrm{TN}-\mathrm{FP} \cdot \mathrm{FN}) /((\mathrm{TP}+\mathrm{FP})(\mathrm{TP}+\mathrm{FN})(\mathrm{TN}+\mathrm{FP})(\mathrm{TN}+\mathrm{FN}))^{1 / 2}$
Busche (2019) Master Thesis https://www.rki.de/EN/Content/infections/epidemiology/signals/projects/Optimisation_Outbreak_
Detection_MasterThesis_Busche_2019.pdf?__blob=publicationFile

Example: 4 optimised hyperparameters for farringtonFlexible:

1.6. IBS: Conclusion and outlook

- supervised learning is a promising venue for outbreak detection!
- labelled data are available
- simple HMM more transparent (explicit probability) and performs better
- towards a framework for developing and benchmarking:
- devise, optimise, combine and compare ML algorithms
- review of international available datasets
- Focus Group AI for Health of ITU/WHO, Topic Group Outbreaks:

We are recruiting partners!
2. ML for Event-Based Surveillance

2.1. A labeled dataset

worked with 2 Public-Health Intelligence groups:

- INIG at RKI
- DVA at WHO, part of the EIOS community (in piloting)

```
learn from the experts in the DVA team of WHO
a binary classification: 1 article is "signal" or "not signal"
signals \(=\) URLs in signals list + Ebola alerts compiled by DVA team \(\Longrightarrow\) labels articles \(=\) EIOS, 2 boards followed by DVA, in English \(\Longrightarrow\) data
```

time ranges:
signals: 1 Nov 2017-29 Sep 2019
EIOS: 1 Nov 2017-31 Aug 2019
https://www.rki.de/EN/Content/Institute/DepartmentsUnits/ZIG/INIG/INIG_node.htmI
inig@rki.de
https://www.who.int/csr/alertresponse/epidemicintelligence/en/
eios@who.int

Signals

- w/o Ebola alerts: 3,499 signals, of which 861 have 1 or more "media" URLs
weekly count

$$
\text { web sites (top } 20 \text { of } 520 \text {) }
$$

- 1,315 Ebola alerts, of which 22 have 1 or more "media" URLs

EIOS articles

Sequentially:

- remove duplicate URLs, keeping the oldest ones
- keep only texts with at least 30 Latin letters
- keep only articles in one of the two boards followed (if not signal)
- keep only texts in English (using langdetect())
$\Longrightarrow 492,036-9,617+1=482,420$ articles
that's an average of 722 articles/day

Matching signals / EIOS

Of 932 unique signal URLs, 274 could be matched to EIOS, of which 20 were removed

$\Longrightarrow 254$ articles labeled "signal"

Looking at signals with 7 days delay: 896 signals

- of those: 245 have web site not in the EIOS dataset, most not English
- of the $375 \mathrm{w} /$ web site in EIOS but not matched, manual inspection of 100 (in the top 10 domains): no error in matching, rather language is not English or were presumably not categorised in the boards

Memory + balancing: random sample: $\mathbf{1 0 \%}$ of EIOS that are not signals
$\Longrightarrow 48,217$ articles labeled "not signal"

2.2. Data processing

Vectorisations

$=$ ways of translating texts into numbers

1. Bag-of-words, with tf-idf:

1 text ~ frequencies of its words, with overall frequencies in corpus discounted
2. Word embeddings, with Word2vec (Google News corpus, 3m words):

1 word ~ vector in "semantic space" 300-dimensional representation
1 text ~ mean of the embeddings of its words

Example of word embeddings:

Coordinates of "Ebola":
> $[0.065,-0.0048,0.030,0.11,-0.065,0.0081,-0.11,-0.059,0.045$, -0.043 ...]

Words most similar to "Ebola":
> [('Ebola_virus', 0.78), ('Marburg_virus', 0.75), ('Ebola_outbreak', 0.70), ('haemorrhagic_fever', 0.69), ('Ebola_fever', 0.69), ('ebola', 0.68), ('Marburg_hemorrhagic_fever', 0.67), ('Ebola_hemorrhagic_fever', 0.67), ('Marburg_fever', 0.67), ('Ebola_haemorrhagic_fever', 0.67)]

Text preprocessing
sentence and then word tokenisation
keep only Latin letters (accents included), digits, and dots
remove stop words
token processing:

- tfidf: remove dots, numbers, accents; lower case; lemmatisation; stemming
- w2v: replace digits with "\#"
keep tokens with 2 or more characters

```
train bi- and trigrams
> trigram_simple_pp[bigram_simple_pp[['human','immunodeficiency','virus']]]
> ['human_immunodeficiency_virus']
> trigram_simple_pp[bigram_simple_pp[['human','immunodeficiency','apple']]]
> ['human_immunodeficiency', 'apple']
```


2.3. Data exploration

Sentiment and topics
quick and dirty... Nothing much

2d visualisations of embeddings (t -SNE)

signal
0

2.4. Different approaches

Training and test datasets

1 partition training / test sets ($80 \% / 20 \%$)
add reduced tfidf (\sim PCA, 300 components) to the 2 vectorisations
upsampling of training data:

- none
- duplicate
- ADASYN (linear interpolation)

standardisation:

- none
- standardise (tfidf: not centred because sparse)
all transformations trained on training set, then applied to training and test sets

Classification algorithms

- complement naive Bayes
- logistic regression
- multilayer perceptron
- random forest
- support vector machine (non-linear)
overall
(5 algorithms) $\times(3$ vectorisations $) \times(3$ upsamplings $) \times(2$ standardisations $)-1 \times 2 \times 3 \times 2$ approaches
$\Longrightarrow 78$ approaches to test

CNB needs positive features: no $w 2 v$ and no reduced tfidf

2.5. Classification performance

Output of the algorithms: for each article, probability of being "signal"

Threshold t :

- if $p($ signal $) \geqslant t$, then prediction $=$ "signal",
- else prediction $=$ "not signal"

For each t :
confusion matrix = (\# true negatives, \# false positives, \# false negatives, \# true positives)

Scores (computed from the confusion matrix):
accuracy / recall (sensitivity) / specificity / precision / F1 / Matthews correlation coefficient / balanced accuracy / geometric mean / index balanced accuracy of the geometric mean

Scores (threshold independent):

- AUC / Relative probability gap
$\mathrm{ba}=$ average of recall obtained on each class
geom_mean $=$ root of the product of sensitivity and specificity
rel_p_gap $=2\left(\mu\left(p_{\text {signal }}\right)-\mu\left(p_{\text {not signal }}\right)\right) /\left(\sigma\left(p_{\text {signal }}\right)-\sigma\left(p_{\text {not signal }}\right)\right)$

Best scores with $t /$ recall ≈ 0.9
Logistic regression / reduced tfidf / duplicate / no standardisation
is best along all scores...

accuracy	0.83
precision	0.021
specificity	0.83
$\mathbf{f 1}$	0.042
mcc	0.13
ba	0.88
geom_mean	0.87
iba_gm	0.76

... but it's a tight race...
top 10 specificity

2.6. EBS: Conclusion and outlook

1 approach stands out at high recall (sensitivity):
TN 7999, FP 1657, FN 3, TP 36
i.e. to find (more than) 36 of the 39 signals, just read $\sim 1,700$ articles out of $\sim 9,700$

Already works well and could be helpful:
no automatisation, but ranking

Low precision and F1. . are maybe OK:
there might be hidden or discarded signals

Many signals lost, mostly because not in English

Immediate tasks

Use all available articles, not just a sample

Proper cross-validation, hyperparameter optimisation

Manual inspection of predicted positives

Apply similar analysis to events

- cf. named entity recognition for INIG at RKI

Perspective

Beyond English:

- automatic translation (is being used by experts!)
- language-specific analyses

Context:

- as supplementary features for classification

Fancier approaches:

- Stacking (combination of approaches)
- Transfer learning of word embeddings, document embeddings, transformer models. . .
- Deep learning

Web application:

- prototypical implementation in an interactive dashboard
- evaluation of usefulness (with new, unfiltered data)
- cf. EventEpi for INIG at RKI

3. Bonus: Interactive Reports and Websites

with Fabian Eckelmann and Knut Perseke (Signale/RKI)

	WHO Outbreak Toolkit Virtual Assistant Wau are looingat the cases fom Woiry Wart nbine Virus eve The Fever, Danger Frour \qquad	

4. Conclusion

Machine (supervised) learning can support signal detection in different surveillance settings

No assumption on what is a signal

Annotated data, i.e. output of expert evaluation, are extremely valuable

They should be systematically saved in a structured fashion in databases

Thank you!

Acknowledgements:

- RKI: Doris Altmann, Hermann Claus, Bettina Rosner (outbreak data)
- RKI: Benedikt Zacher (HMM)
- RKI: Sandra Beermann, Sarah Esquevin, Raskit Lachmann (public-health intelligence)
- WHO: Philip Abdelmalik, Émilie Péron, Johannes Schnitzler (EIOS)
- WHO: Sooyoung Kim, Annika Wendland (EBS signals, risk assessment)

IBS: Focus Group AI for Health of ITU/WHO, Topic Group Outbreaks: https://www.itu.int/en/ITU-T/focusgroups/ai4h/Pages/outbreaks.aspx

EBS: work done for INIG at RKI:
Abbood et al (2019) medRxiv, https://doi.org/10.1101/19006395

```
        %%%
    SIGNALE
    signale@rki.de
    rki.de/signale-project
```


Supplementary Information

Dynamical properties can be inferred from hmmOutbreak, for example:
Outbreak weight β_{6} (weeks with outbreaks have $e^{\beta_{6}}$ more cases):

Campylobacteriosis

Simulations

For campylobacteriosis:

- weeks with outbreaks indeed have significantly more cases
- on average $e^{0.5} \approx 1.6$ more cases in outbreak weeks, all other things equal

Signals (w/o Ebola alerts)

Signals (w/o Ebola alerts)

signals weekly count for top 10 countries

Signals (w/o Ebola alerts)

media and EMS links

Word2vec trained on Google News, examples:

```
> w2v.vectors_norm[w2v.vocab['HIV'].index]
> [-0.027214931, 0.005086286, -0.00077202555, -0.024440594, -0.061563876, -0.0069028167, -0.04993808, 0.028800268,
-0.024704818, -0.03778384 ... ]
> w2v.most_similar('HIV')
> [('HIV_AIDS', 0.8241558074951172), ('HIV_infection', 0.8100206851959229), ('HIV_infected', 0.782840371131897),
('AIDS', 0.763182520866394), ('HIV_Aids', 0.7069978713989258), ('HIV_AIDs', 0.7062243223190308), ('Hiv',
0.6802983283996582), ('human_immunodeficiency_virus', 0.6724722981452942), ('Aids', 0.6655842065811157), ('H.I.V.',
0.6647853255271912)]
> w2v.vectors_norm[w2v.vocab['influenza'].index]
> [0.015480349, 0.00036750827, 0.023640532, 0.04224095, 0.008460191, -0.015480349, -0.08640195, -0.03648082,
0.058801327, -0.027600622 ... ]
> w2v.most_similar('influenza')
> [('flu', 0.8435951471328735), ('H#N#', 0.8313145041465759), ('H#N#_influenza', 0.8289912939071655),
('H#N#_virus', 0.8022348880767822), ('seasonal_influenza', 0.8018087148666382), ('H#N#_flu', 0.7963185906410217),
('Influenza', 0.7937184572219849), ('H#N#_influenza_virus', 0.7823264598846436), ('flu_virus', 0.7783315181732178),
('influenza_virus', 0.7776930332183838)]
> w2v.vectors_norm[w2v.vocab['H#N#'].index]
> [0.040303856, -0.08500449, 0.014717014, 0.027357768, -0.03615134, 0.020884724, -0.085981555, -0.023327382,
0.043479312, 0.0054959804 ... ]
> w2v.most_similar('H#N#')
> [('H#N#_virus', 0.9167306423187256), ('H#N#_flu', 0.8859533071517944), ('swine_flu', 0.8520038723945618),
('H#N#_influenza', 0.850509524345398), ('influenza', 0.8313145041465759), ('H#N#_swine_flu', 0.8082534074783325),
('bird_flu', 0.7901098728179932), ('H#N#_influenza_virus', 0.7855583429336548), ('avian_influenza',
0.7841204404830933), ('H#N#_strain', 0.7841016054153442)]
```


Quick and dirty:

Sentiment

"polarity" = negative to positive sentiment

Topics

"topic modelling" ~ clustering of bag-of-words
Nothing meaningful

2d visualisations (t-SNE)

tfidf first reduced to 300 components ($\sim P C A$)

Best scores achieved with varying t
score_type
score_value
0.15
mcc
0.16
ba
0.88
geom_mean
0.87
iba_gm
0.76
auc
0.92
rel_p_gap
approach
logistic_regression-tfidf_dr-duplicate-no_st
logistic_regression-tfidf_dr-duplicate-no_st
logistic_regression-tfidf_dr-duplicate-no_st
logistic_regression-tfidf_dr-duplicate-no_st
logistic_regression-tfidf_dr-duplicate-no_st
logistic_regression-tfidf_dr-adasyn-no_st
logistic_regression-w2v-duplicate-no_st
logistic_regression-w2v-duplicate-no_st

confusion_matrix

TN 9576 / FP 80 / FN 29 / TP 10
TN 9576 / FP 80 / FN 29 / TP 10 TN 7999 / FP 1657 / FN 3 / TP 36 TN 7999 / FP 1657 / FN 3 / TP 36 TN 7999 / FP 1657 / FN 3 / TP 36

None
None

recall of 1 resp. specificity of 1 can always be achieved with $t=0$ resp. $t=1$

Logistic regression / reduced tfidf / duplicate / no standardisation

Apply similar analysis to events (in EMS) and not just signals:

- "event" defined as disease + country + time range \rightarrow collection of articles
- match with EMS database
- predict (risk) assessments

IHR Assessment ($0 / 1$), Serious Public Health Impact (WHO) ($0 / 1$), Unusual or Unexpected (WHO) ($0 / 1$), International Disease Spread (WHO) ($0 / 1$), Interference with international travel or trade (WHO) ($0 / 1$)
RRANationalRiskLevel ($0 / 1 / 2 / 3 / 4$), RRARegionalRiskLevel $(0 / 1 / 2 / 3 / 4)$, RRAGlobalRiskLevel $(0 / 1 / 2 / 3 / 4)$

- events and signals partially linked
- labeled datasets already prepared!

[^0]: Noufaily et al (2013) Statistics in Medicine 32(7) 1206 http://doi.org/10.1002/sim. 5595
 Salmon et al (2016) Journal of Statistical Software 70(10) http://doi.org/10.18637/jss.v070.i10

[^1]: Enki et al (2016) PLOS ONE 11(8) e0160759 http://doi.org/10.1371/journal.pone. 0160759
 Bédubourg, Le Strat (2017) PLOS ONE 12(7) e0181227 http://doi.org/10.1371/journal.pone. 0181227
 Hoffmann, Dreesman (2010) PAE-project report, Niedersächsische Landesgesundheitsamt (NLGA) / ESCAIDE poster

