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Abstract

To ensure permanent responsiveness to emerging disease outbreaks, the Robert Koch

Institute (RKI) is the contact and evaluation point for notifications of reportable diseases

from health departments and other public health institutes. However, the RKI also needs

to look for emerging outbreaks in the vast amount of international epidemiological news to

detect relevant outbreaks as early as possible. For this, a dedicated group of epidemiologists

reads the news from several foreign sources every day, summarizes the most important

articles, and then writes reports about them. The source and the key information about

these articles like the described disease, country of origin, or confirmed cases are put into

a curated list named Incident Database. This time-consuming procedure can be shortened

by automated information extraction and assessment of epidemiological news. To this end,

I have developed a surveillance tool which summarizes epidemiological news and rates the

relevance of articles for the RKI.

Before I could develop the surveillance tool, I needed to acquire data to train machine

learning models. Therefore, I used the annotations in the Incident Database and addition-

ally scraped all articles from the most used sources of the Incident Database to create a

labeled data set where articles put into the Incident Database are labeled relevant, and all

the other scraped epidemiological articles are labeled irrelevant.

To summarize articles, I applied named entity recognition to epidemiological texts

and then trained naive Bayes classifier using the Incident Database as expert labels to

find the most important entities of an epidemiological article such as disease, country,

and confirmed cases. For the relevance scoring, I compared naive Bayes classifiers using

the bag-of-words approach with, a support vector machine, neural networks and other

classifier trained with document embeddings of scraped and labeled articles. Finally,

I built a web app to demonstrate the usability of this tool. With this, I showed how

epidemiologists in the future could overcome the difficulty to process large amounts of

international epidemiological intelligence.
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I thank everyone in the Signale team for making my time in Berlin so enjoyable. Thank

you, Max, for welcoming me so openly, yet so eccentric. Thank you Fabse, for giving me

a voice when I couldn’t and understanding my idiosyncrasies. Thank you Stéphane and
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CHAPTER 1

Introduction

1.1 Epidemiological Surveillance at the Robert Koch

Institute

The Robert Koch Institute (RKI), as a public health institute, is a central figure in the

containment of health risks to the populace by being the main institution for disease

prevention and surveillance in Germany. Its primary purposes are the detection, prevention,

and control of infectious diseases [Robert Koch Institute, 2018]. To fulfill this objective,

the priority tasks of the RKI lie in the field of epidemiology [Robert Koch Institute, 2018].

Epidemiology consists of a large field of studies that focuses on the distribution and the

determinants of health-related events [WHO, 2014b]. Among many foci of epidemiology

like health and demography, mental health, and non-communicable diseases, the primary

interest during the proceedings of this thesis lies in infectious epidemiology. Its overall

goal is the detection and (subsequent) containment of infectious disease outbreaks to

minimize health consequences and the burden to the public health apparatus. The

procedure to detect such potential risks could be expressed in simple terms as the detection

of occurrences of cases more than usual given time and region. For the investigation and

prevention of outbreaks, epidemiology makes use of several methodologies like descriptive

studies and surveillance [WHO, 2014b].

One primary mission of infectious epidemiology is the early detection objective [WHO,

2014a]. Therefore, surveillance is an indispensable tool for a functional early warning

mechanism. Since 2001, the Infektionsschutzgesetz (the Protection against Infection

Act) (IfSG) is the foundation of the German surveillance system which demands a report

to the authorities after the determination of a notifiable disease [Bundesminesterium der

Justiz und für Verbraucherschutz, 2001]. The IfSG earmarked an electronic reporting

system which led to the development of SurvNet@RKI, a web service and software tool
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for reporting communicable diseases that is used by the local and state health departments

of Germany [Faensen et al., 2006]. Finally, epidemiological surveillance is conducted by

using the data accumulated by SurvNet@RKI to apply analyzes to detect conspicuities

and disease outbreaks.

The provision of an infrastructure for epidemiologists to systematically detect, verify,

and share data to acquire an informative picture of the epidemic threat to public health is

called epidemic intelligence [WHO, 2014a]. It facilitates epidemiological surveillance

through information processing and supply of formal, informal, actively and passively

acquired information.

1.1.1 Indicator- and Event-Based Surveillance

The IfSG describes a traditional reporting system that facilitates the acquisition of

trustworthy, human and non-human related health-based formal sources for the subsequent

interpretation of such structured data [WHO, 2014a]. This process is called indicator-

based surveillance. The acquisition of this data is mostly a passive process and follows

routines established by the legislator and the public health institute which in the case

of Germany is SurvNet@RKI. These routines follow rules that are disease- or syndrome-

specific. Indicator-based surveillance is not only responsible for event detection but also

for measuring the impact and evaluation of health programs [WHO, 2014a].

Hints for an outbreak can be detected through an increased amount of reported cases of

a dangerous infection or changed circumstances that are known to entail disease outbreaks,

e.g., increased reporting of salmonellosis during warm weather or (in the international

context) a loss of proper sanitation which often leads to a cholera outbreak. Therefore,

besides traditional surveillance that processes laboratory confirmations, external factors

like weather, attendance monitoring at school and workplace, social media, and the web

are also informative [WHO, 2014a].

The monitoring of information also generated outside the public health system, and its

analysis is called event-based surveillance(EBS) and is the speed determining factor

in epidemiological surveillance. With EBS, epidemiologists can detect and report events

before the recognition of human cases in the reporting system of the public health system

[WHO, 2014a]. The fast detection and verification of possibly threatening events are

essential and heavily depend on a good-working epidemic intelligence to handle a large

amount of data from various sources. Especially in the times of the internet, the topicality

and quantity of data can be useful to detect even rumors of suspected outbreaks. As a

result, more than 60% of the initial outbreak reports refer to such informal sources [WHO,

2015]. However, filtering this massive amount of data poses the difficulty to find the right

criteria for which events to consider interesting and which to discard. The required high

sensitivity to raise warnings about findings competes with the demand to filter the massive
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amount of data from the web. At the RKI, two central units conduct EBS, namely EpiLag

and INIG.

1.1.2 EpiLag

To have an adequate response mechanism that cannot be satisfied by existing surveillance

infrastructure, in 2009 the epidemiologische Länder-Bund-Konferenz (Epidemiolog-

ical Federal State-State Conference) (EpiLag) was established [Mohr et al., 2010]. In

Germany, the health policy is handled by the federal states, and thus the infrastructure

of the health authorities is different for each state. To still communicate efficiently, the

EpiLag established a weekly conference call where the RKI and the federal states are

exchanging on events of high importance for the public health which require immediate

attention. The EpiLag makes recommendations on how to handle threats to public health

and provides a platform to coordinate undertakings that affect several federal states.

1.1.3 INIG

The Informationsstelle für Internationalen Gesundheitsschutz (The Information

Centre for International Health Protection) (INIG) is a young project that is staffed

by epidemiologists with different backgrounds in medicine and public health to provide

international epidemiological surveillance for the RKI. For this, they tasked epidemiologists

with reading trusted sources (Tab. 4.1) for epidemiological articles to find international

events that are particularly important for the public health of Germany. When INIG

members are unsure whether an article describes a noteworthy outbreak, they have the

opportunity to consult each other. This procedure often leads to a more educated decision

about whether an outbreak article is interesting. INIG also supports the work of the

EpiLag by providing intelligence about countries that exceed Germany’s neighboring states,

countries with which the RKI has no official information exchange agreement. According

to former Minister of Health Hermann Gröhe, the importance of global health was most

evident during the uprise of the Ebola disease and Zika epidemics starting in 2015 which

showed that the protection of German citizens and the aid for affected people requires

international cooperation.

1.2 Natural Language Processing and Epidemiology

Although the processing of informal sources as part of EBS promises faster and more

effective surveillance, the large quantity of data and their inaccuracy poses the challenge

to unlock the potential of those sources efficiently. Algorithms in the field of natural

language processing (NLP), however, are well suited to tap these informal resources and
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help to structure and filter this information. These algorithms are mostly data-driven, i.e.,

they independently select features from the data and are not necessarily dependent on

formalized expert knowledge to return useful output. The general data-driven approach

(bottom-up) in machine learning is perceived precarious in the health sector because it

usually does not answer how a decision was made. Indeed, while a machine learning

model could perform better than a designed formal model, the machine learning model’s

decisions used to be hard to disentangle. But, with the recent improvements in making

those decisions accessible [Arras et al., 2017], and endeavors to tackle biases in machine

learning models, those usual reservations can be better approached. Furthermore, with

advancing digitalization of public health, more and better quality data become available

[Benzler et al., 2014]. Due to that, a bottom-up approach is now more often a valid

alternative.

This paradigm shift is particularly apparent in the field of NLP. Up to the end of the

20th century, mainly explicitly model translation algorithms were used, called rule-based-

machine-translation. They demanded a behemoth of rules to account not only for two

grammatical systems that needed to be aligned but also handle special cases, idioms, and

dynamics of language [Bar-Hillel, 1953, 1960]. With the renaissance of deep learning,

the bottom-up approach performed much better and required less modeling and at the

same time accuracy in translations improved by a manifold [Bengio et al., 2003]. The

ease with which already existing labeled data, like websites that provide their content in

different languages, could be utilized was also exemplary for the advancing improvement

of bottom-up methods [Macklovitch and Simard, 2000].

Signale is a group within the Infectious Disease Data Science Unit of the RKI

that is mainly responsible for providing interfaces between application and machine learning,

including NLP. Signale provides intuitive access to critical epidemiological analyses via

dashboards for different use cases within the RKI and develops outbreak algorithms.

Therefore, the Signale team is naturally interested in drawing from EBS and fueling the

paradigm shift in epidemiological surveillance and utilizing the new capabilities of NLP.

This thesis was written at the Signale team.

1.3 Motivation

The broad idea at the beginning of this project was to integrate NLP into a dashboard for

epidemiologists who perform epidemiological surveillance to assist them in their intensive

news survey. EBS was an exciting and well-suited topic for this project due to its

dependency on large unstructured data. The RKI has two groups that perform EBS that

would profit the most from NLP aided tools. The two groups, EpiLag and INIG, analyze

numerous, also informal textual sources for their work and thus, I decided to look into
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their work to pinpoint whether and how NLP might prove useful for them.

While the EpiLag focuses on disease outbreaks within Germany, INIG is mainly

interested in international disease outbreaks. Since the EpiLag is a phone conference and

the information provided to them is from the 16 state health departments of Germany, it

is hard to retrace the origin of all their reported information. Due to the difficult access to

their sources, they did not pose an ideal candidate for the development of an NLP-driven

aid. INIG, however, is a project that depends much more on self-acquired intelligence.

Unlike EpiLag, INIG collects information from well-defined, publicly accessible sources.

Each week, one person of the INIG team reads articles from a fixed set of sources and

filters out outbreak news that is considered important for the RKI, the ministry of health,

or the German army. Then the INIG staff member fills an Excel sheet with the information

from the found article. The overall process takes around 30 minutes every day which led

to the idea to automate this process.

The first goal of the thesis was to automatically put key information like the disease or

the number of confirmed cases from an outbreak article into a database and replace the

previous Excel-workflow. Being able to describe the article based on its key information

led to the second goal: The utilization of articles and their keywords to learn the relevance

of an article and then use this knowledge to develop a recommendation system to decrease

the burden of finding important articles. Third, when having a functional recommendation

system, a further future goal was to unravel the epidemiologists’ decision process and

try to homogenize and standardize their workflow. With a working summarization and

relevance scoring pipeline, a possible further goal was to expand the work of INIG to more

sources and support the parsing of non-English text.

1.4 Related Work

The Global Rapid Identification Tool System (GRITS) by the EcoHealth Alliance is

a website that allows evaluating epidemiological texts automatically. It extracts key

information about the text and makes a classification about which disease is most likely

thematized in the text. GRITS, however, is not automatable and customizable. In case

INIG members would like to use GRITS, they would need to manually copy-paste URLs

into GRITS and manually extract its output. Furthermore, GRITS does not filter news

but only processes them. Hence, it does not reduce the burden of reading several outbreak

articles.

MEDISYS is a webpage that filters and sorts outbreak news from a vast amount of

sources of which INIG’s used sources are mostly covered. However, the classification of

disease outbreak news is untransparent and does not include key information extraction as

in GRITS. It might filter for other criteria that are not of interest for INIG, and therefore
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does not promise any time savings. Due to the high amount of sources listed at MEDISYS,

the reading burden would be even increased.
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CHAPTER 2

Background

2.1 Natural language Processing

Natural language processing (NLP) consists of a set of methods that operate on natural

language (language that naturally evolved among humans) to solve tasks like translation,

question answering, text summarization, and interaction with spoken language. While

humans can intuitively solve these tasks, machines require a whole batch of preprocessing

steps to utilize such raw data and cope with the redundancy in language and facilitate

the otherwise not accessible underlying rules (including but not limited to grammar). Fig.

2.1 shows a pipeline that illustrates the language wrangling steps common in NLP for

information extraction.

Figure 2.1: An illustration of a typical pipeline for information extraction in NLP. The pipeline
starts with the raw text and undergoes several preprocessing steps (indicated by a rectangle)
yielding intermediate output (placed next to the arrows). The final output can be a list of tuples
of the entity and the corresponding word like [(ORG, 'Bayer'), (LOC, 'Baveria')] (adapted
from Bird et al. [2009]).
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2.1.1 Stop Words

Assuming we want to analyze texts on word level, we might be looking for words that

appear more often than others or only appear in certain texts. This information can tell

us a lot about the topic or sentiment of a text. Suppose we find that a text is frequently

mentioning Brexit more than any other text. Then we can deduct that this text might be

a (news) article and that it is about the exit of Great Britain from the European Union.

However, we quickly realize that certain words also appear more frequently than others,

without revealing much about the content of the text. Words like the, of, than appear

numerously in every English text independently of the topic or the source. Such words

first received particular attention when Luhn [1960] identified their property to obscure

target words for further analyzes. These words are called stop words, and there are by

now many curated lists of stop words for different languages and tasks [RANKS, 2019].

For any NLP algorithm that requires information about the grammatical structure of

a text, we want to keep stop words since they convey a substantial part of grammatical

information. However, should we be interested in the topic or source of the text, then it

might be sufficient to search for this information within only a handful of words. Therefore,

it is common practice to remove stop words to improve the performance of classification

algorithms [McCallum and Nigam, 1998; Lodhi et al., 2002; Tong and Koller, 2001]. In

state-of-the-art neural classifier like described by Howard and Ruder [2018], it is not always

necessary.

2.1.2 Regular Expressions

Regular expressions (regex) is an expression using ASCII characters to define a set of strings

that this expression matches. Regex consists of meta and literal characters. For a literal

character holds that it matches this exact character in some target text. A metacharacter is

interpreted and facilitates regexs [Kleene, 1951]. While these metacharacters vary between

different regex libraries, most of them are identical. A literal character combined with

a * is a ubiquitous functionality (known as the Kleene star) and means that the literal

character may appear 0 to n times in succession to allow a match. To still be able to use

those metacharacters as literal characters, they can be escaped (generally with a backslash).

Tokenization (2.1.3) or stemming (2.1.5) are preprocessing steps in NLP that sometimes

use rules formulated as regexs.

2.1.3 Tokenization

A token is an abstraction of a piece of information. In NLP this can be a single character,

word, punctuation, or sentence. The goal in tokenization is to split a text into meaningful
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chunks that obey the rules of the natural language. Word tokenization is the cornerstone

for the vast majority of NLP pipelines [Webster and Kit, 1992].

Tokens, however, do not always match how we think about words or sentences which

can be shown by the following example. If we would formulate simple rules for tokenization,

then a definition for a word would be a string enclosed by single white space characters. A

simple regex for this rule would be [a-zA-Z]+ that matches 1 to n (indicated by +) lower

or uppercase letter (indicated by [a-zA-Z]) in succession. Words delimited by periods

would then be a sentence. These regexs, however, do not always work as expected. The

United States of America is such an example where our rules would fail. They lead to

splitting this string into four tokens {'United ', 'States ', 'of ', 'America'} although these

tokens are not independent of each other and thus should be one token. Longer names

like this one often have acronyms such as the U.S.A. Following our simple rules, the word

U.S.A would be split into six tokens {'U ', '.', 'S ', '.', 'A', '.'} since it is mistaken by a

sentence.

On the other hand, using an established tokenizer is also wondering e.g, don’t is

split into {'do', 'n’t '} but we know it should be {'do', 'not '} assuming tokens are a

representation of words. However, since tokens are not meant to be a precise image of

natural language words but rather a method to yield word level understanding then not

represented as n’t will not worsen any text analysis, if the usage of n’t is consistent. So

without a doubt, the United States of America or the acronym U.S.A. needs to be treated

as a single unit for sufficient word-level understanding. It is common to use a curated

list of expected abbreviations, names, and phrases to avoid bad tokenization. To improve

sentence tokenization further, one could train an unsupervised sentence boundary detector

as described in Kiss and Strunk [2006]. This method extracts the most occurring sentence

breaks and learns to discard those that do not to seem to be a valid new sentence. The

acronym U.S.A. will occur only as a fraction compared to more frequent sentence breaks.

The most common one will be lower-case letters followed by a whitespace, a period, and

then an upper-case letter in standard literature or new lines in online chats.

Sentence tokenization is based on word-tokenization and is also part of most text

analyzes. It becomes essential, for example, if a text includes logical elements (like

paragraphs or chapters) that need to be handled differently as in news summarization

where the core content is more likely to be found in the first paragraph.

2.1.4 POS-Tagging

Although tasks like text classification perform already well with a text that only has been

tokenized, mostly we require further processing to do more language-aware tasks. If the

grammatical correction of texts is the goal of some NLP pipeline, then it goes without

saying that we need more information about the grammatical function of the extracted
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token.

We could, for example, want to identify all nouns from a text. This will be an easy

task for many words like car or mother. They can be looked up in an English dictionary

which will confirm that these words are nouns. However, words like meeting can take

different parts of speech (verb or noun).

To find the noun, we apply position-of-speech tagging (POS-tagging). A POS-

tagger is typically a machine learning model like a decision tree [Màrquez and Rodŕıguez,

1998] trained on an annotated corpus like Penn Treebank [Marcus et al., 1993], that already

has the right grammatical entities assigned to each word in unstructured texts. When

the correct grammatical function of all tokens is determined, it is simple to detect the

grammatical number of the noun occurring before that and hence correct the sentence

grammatically.

2.1.5 Lemmatization and Stemming

Having a well-tokenized text, we can do descriptive statistics on the text, e.g., by count-

ing the occurrences of tokens or detect tokens that only occur once, so-called hapax

legomenon. The simplest way to sensibly reason about a text would be to find the most

frequent words, given that we removed stop words to infer the subject of a text. If the

goal were to infer the type of sport based on the most occurring words in sports news

we would hope to find a high term frequency for something like throw for baseball or

strike for soccer. Merely counting tokens to display the most occurring ones in a text will

not be sufficient. The words in the text will be used in many forms due to grammatical

conjugation. For example, thrown and throw will be treated as unequal tokens by the

computer although they mean the same. Therefore, we need to transform all words to

their infinitive form.

There are two options: stemming and lemmatization. Stemming only prunes the

end of words following rules. These rules are specified as regular expressions which try to

exploit regularities in language to infer the infinitive form. However, they will not always

reliably work due to special cases and ambiguities of natural language. One common rule

among stemmers is the removal of ing at the end of a lower case word to transform a word

into its infinitive form. This rule works correctly in most cases but fails for words like

lying that the stemmer transforms to ly which is a not desired behavior.

Lemmatization is a more sophisticated method. First, it uses a grammatical database

lookup instead of rules and therefore will be able to transform lying correctly to lie. Second,

it incorporates POS-tagging to determine how words need to be transformed based on

their grammatical function [Müller et al., 2015]. If the word meeting is used as a noun,

we do not want to transform it to meet but keep it like it is. Lemmatization produces

better results than stemming [Balakrishnan and Lloyd-Yemoh, 2014] for a higher cost of
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computation.

2.1.6 (Disease) Named-Entity Recognition

Named-entity recognition (NER) is a step placed towards the end of an NLP pipeline

(Fig. 2.1). After sentences and words have been tokenized, and POS-tagging was applied,

it might be important for some learning algorithms to know the named-entity of words.

Typical examples are the recognition of names of persons or companies, and numerical

entities, like time, dates, and money [Nadeau and Sekine, 2009]. This recognition might be

part of some NLP pipeline, but it also can be part of a pipeline for information retrieval

(IR). The goal of IR is the extraction of specific information and their subsequent storage

in a database to structure a large amount of data that is difficult to access [Manning et al.,

2008; Wei et al., 2011].

The reason NER is not covered merely by a dictionary lookup but a separate module

in a pipeline is the difficulty to deal with ambiguous words like Apple. When the word

Apple is at the beginning of a text, it is unclear whether it stands for the fruit or a tech

company. While in the beginning, NER consisted of handcrafted rules and heuristics

[Jacobs et al., 1991], NER is now a classification problem that can be solved through

supervised learning, capable of learning named entities with hidden Markov models,

decision trees, or conditional random fields [Nadeau and Sekine, 2009]. Though, there is a

shift towards un/semi-supervised methods that infer features (as neural networks) and

outperform feature-engineered systems (as decision trees) [Yadav and Bethard, 2018].

In the medical field, such ambiguities rise not because the proper names are so

indistinguishable from other common words, but because there are many forms how to

write a disease name and equally many abbreviations (e.g., cancer, carcinoma, malignant

tumor, CA). To reason from medical texts, it is necessary to identify those utterances that

are most likely representing a disease. Thus, disease-NER is a crucial processing step in

this domain. However, benchmarks also showed that in highly standardized, text dictionary

lookups perform equally well [Jimeno et al., 2008]. Therefore, the exact procedure to

perform disease NER depends on the source of interest.

2.1.7 Corpus

A corpus is an organized collection of (related) text documents that are simple to

access. They can be annotated (as required for training POS-tagger) or preprocessed (e.g.,

tokenized) [Bengfort et al., 2018]. Preprocessing, however, can be time-intensive especially

for large amounts of data and this process irreversibly changes the raw text. Thus, each

intermediate step should be stored in the corpus as well. This way, quality control is

assured, replacement of preprocessing steps is streamlined, and repeated computations or

25



even human labor is avoided. Optimally, a corpus is easily accessible and safely stored

since it contains laboriously created data. NoSQL databases are advantageous for corpus

saving due to their minimal overhead and allow access to data that would be too large

for a normal machine. This way corpora can easily be shared by providing access to the

database. Alternatively, they can be stored as a folder system containing .txt, .XML, or

.JSON files.

2.2 Machine Learning

Machine learning (ML) is an attempt to make the computer learn. Mitchell described

learning broadly as,

“A computer program is said to learn from experience E with respect to some

class of task T and performance measure P , if its performance at tasks in T ,

as measured by P , improves with experience E .”

There are, however, ML algorithms that not necessarily define E . Making experience from

seeing labeled examples is called supervised learning and learning a model without

labels is called unsupervised learning.

2.2.1 Bag-Of-Words

It is typical in a machine learning task that large amounts of data can make explicit

feature engineering unnecessary. Also, instead of requiring too much domain knowledge, it

is preferred to let the algorithm determine important features. One typical example of

this in NLP is the bag-of-words approach.

It is particularly challenging to model language because of its entangled grammar, all

its special cases, idioms, and ambiguity. Therefore, we can try to analyze a text based

only on the occurrences of the words in the text without their grammatical context. We

do so by tokenizing a text, lemmatize the tokens and operate on the set of words left after

this preprocessing as our set of features.

A typical example of this simple approach is spam detection. Given a set of emails

and labels spam and not spam, a machine learning model could learn to classify spam.

2.2.2 Imbalanced Class Problem

When it is required to detect seldom events, like cancer in patients through imaging, the

performance of the classifier suffers from imbalanced classes. In the cancer example,

this would mean that images showing a tumor are much rarer than those without cancer.

A classifier then tends to classify most input as the majority class, i.e., the patient not
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having cancer, which would yield a high accuracy but is fatal for the patient. The accuracy

(the relative amount of correctly classified classes) in this case is not a useful measure, but

there are many ways to tackle the class imbalance problem.

One way is cost-sensitive learning, which treats different misclassifications differently

as opposed to cost-insensitive learning that only tries to maximize accuracy. Thus, in

cost-sensitive learning, it is possible to explicitly model the, e.g., minimization of false

negatives such as in the cancer detection example by introducing a cost function for

misclassifications or shift the decision threshold of the classifier towards the imbalanced

classes [Ling and Sheng, 2008].

Another way is using up- and downsampling methods. A naive downsampling approach

would be to discard data of the majority class until the classes are balanced. The naive

counterpart to downsampling is the duplication of minority class instances and is called

upsampling. However, there are more sophisticated methods, that will downsample

redundant majority class instances or synthesize data, in order to create novel examples of

the minority class. One well performing upsampling method is called Adaptive Synthetic

Sampling Approach for Imbalanced Learning (ADASYN) [He et al., 2008]. The

general procedure of ADASYN is described as,

d =
ms

ml

(2.1)

G = (ml −ms) · β (2.2)

ri =
∆i

K
, i = 1, . . . ,ms (2.3)

r̂ =
ri∑ms

i=1 ri
(2.4)

gi = r̂ ·G (2.5)

∀xi repeat gi times: si = xi + (xzi − xi) · λ (2.6)

where d is the degree of imbalance of the small and large class (ms and ml respectively), G

is the number of synthetic data examples required to achieve a class balance of β ∈ [0, 1].

∆i is the number of examples having K nearest neighbors of xi from the majority class,

(2.4) is a normalization step, and gi is the number of synthetic data instances that need to

be generated for each minority example xi. (2.6) is the main algorithm where for each

data point xi, gi synthesizations are conducted. Thereby, xzi is a random data example

from the K nearest neighbors, and λ ∈ [0, 1] is a random number.

Finally, a good performance measure is required to evaluate the classifier’s learning

progress. Accuracy, as illustrated before, is not a reliable indicator in an imbalanced

two class dataset. The Index of Balanced Accuracy (IBA), however, tries to take the
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imbalance into account and is defined as,

IBAα = (1 + α · (TPrate− TNrate)) · TPrate · TNrate

where 0 ≤ α ≤ 1 and α being a dominance index, that needs to be fine-tuned based on

how significant the dominating class is supposed to be.

2.2.3 Naive Bayes Classifier

The naive Bayes classifier (NBC) is a probabilistic classifier. It describes a set of

algorithms capable of learning to infer a class given a set of features and labels. The NBC

is defined as,

x = {x1, x2, . . . , xn} (2.7)

C = {Ck | k ∈ K} (2.8)

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(2.9)

p(Ck|x) =
p(x1|Ck)p(x2|Ck) . . . p(xn|Ck)p(Ck)

p(x)
(2.10)

where x is a data point which consists of n features. C is the set of all classes, and p(Ck|x)

is the probability x belonging to class Ck. We are allowed to write (2.9) as (2.10) due the

independene assumption of the features of x,

p(xi|{∀xj ∈ x : j 6= i}, Ck)
xi⊥⊥∀xj

= p(xi|Ck)

A standard procedure to predict the most likely class that x belongs to, is to find the

maximum a posteriori probability

arg max
k∈C

p(Ck|x) (2.11)

To evaluate (2.10), we need to take the product of the probabilities of the features given

the class and then consider the class with the highest probability for the classification as

in (2.11).

Note, the classifier is named naive because we assume that every feature in the vector

x is independent, i.e., there is no correlation between them. This assumption is most of

the time wrong, but in practice, NBC still performs very well [Rish, 2001].
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2.2.3.1 Multinomial Naive Bayes for Text Classification

For classifying texts based on the words they contain as in the bag-of-words approach, we

can apply multinomial naive Bayes as follows,

C = {Ck | k ∈ K} (2.12)

t = {c1, c2, . . . , cn} (2.13)

T k = {td|∀d ∈ DCk} (2.14)

p(tk,i|Ck) =
tk,i∑

∀tj∈T k
tk,j

(2.15)

p(Ck|td) ∝ p(Ck)
|td|∏
i=1

p(td,i|Ck) (2.16)

Where C is the set of text classes, and t contains the token counts of the whole vocabulary,

ci being the occurrence count of term i. T k is a matrix where the token counts c are the

columns, and the documents d the rows consisting of all documents D from class Ck. To

calculate the likelihood of p(tk,i|Ck) we divide the occurrence of token tk,i by the sum of

all token occurrences in the same class Ck. Following the independency assumption as in

(2.10) we now can calculate P (Ck|td) as the product of the prior P (Ck) – the probability

of class Ck as learned from the training set – and the probabilities of all the terms t1...n

given the prior class. For classification, the arg max as in (2.11) is taken.

Three problems can occur in text classification that need to be handled. First, the

high probability of numerical underflow due to the large product of several values < 1,

second, some token ti ∈ td having a count of 0 that would nullify the whole product, and

third, large disparities of token counts that bias the classification. The solution to the

underflow problem is to transform (2.16) into log-space which equals to:

log(P (Ck|td)) ∝ log(P (Ck)) +

|td|∑
i=1

log(p(td,i|Ck))

To avoid p(ti|Ck) becoming 0 we apply Laplace smoothing to (2.15) which yields

p(tk,i|Ck) =
tk,i + 1∑

∀tj∈T k
tk,j + 1

and to avoid a bias towards some exceptionally frequent words, term frequency-inverse

document frequency(tf-idf) corrects this discrepancy by weighting the term frequency
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as follows,

tf(t, d) =
ft,d∑
t′∈d ft′,d

(2.17)

idf(t, d,D) = log

(
|D|

|d ∈ D : t ∈ d|

)
(2.18)

tf-idf(t, d,D) = tf(t, d) · idf(t, d,D) (2.19)

where ft,d is the term frequency of term t in document d and t′ is any term in d. |D| is

the number of documents in the corpus and |d ∈ D : t ∈ d| is the number of documents

containing term t. (2.19) is the final formula that balances discrepancies between term

frequencies over several documents.

2.2.3.2 Bernoulli Naive Bayes

Especially for shorter texts and binary decision (spam, not spam), there is only a small gain

to use token counts. The Bernoulli variant of the NBC explicitly models the absence and

presence of words which is done by a different approach to estimating p(ti|Cb) (comparison

to 2.15). The probability of token ti given some binary class is calculated like,

p(ti|Cb) = p(ti)(1− p(ti))(1−b)

where b ∈ {0, 1} and Cb is the corresponding class.

2.2.3.3 Complement Naive Bayes

There are cases where the naive assumption is particularly ill made. In an unbalanced class

problem, the data is skewed towards the larger class which the following table illustrates,

Table 2.1: A statistical evaluation of a coin flip experiment with an imbalanced class. θ is the
probability of a class to yield head (H). We flip one coin in Class 1 and two coins in Class 2 per
row. p(data) is the probability for the seen coin flip. The column Label for H contains the class
assignment after the coin flip (adapted from Rennie et al. [2003]).

Class 1 Class 2 p(data) Label for H
θ = 0.25 θ = 0.2

T TT 0.48 none
T {HT, TH} 0.24 Class2
T HH 0.03 Class2
H TT 0.16 Class1
H {HT, TH} 0.08 Class1
H HH 0.01 none

The experiment shown in Tab. 2.1 , that considers each possible outcome of coin

30



flips, suggests a 24% probability for Class 1 to yield H and 27% for Class 2, although the

probability for Class 1 to yield H is actually higher. The proposed solution by Rennie

et al. [2003] is to minimize the probability of a vector of word counts not belonging to a

class to tackle class imbalance,

arg min p(¬Ck)
|td|∏
i=1

1

p(td,i|¬ Ck)

2.2.4 Support Vector Machine

A prominent application of vector space based machine learning is the support vector

machine (SVM). It is a classification algorithm that is trained in a supervised fashion. It

is often used for document classification and performs well even on small data [Manning

et al., 2008]. During training time, the SVM tries to find a decision boundary in the

vector space of the training data to separate two classes with a maximal margin. This is

accomplished by choosing a hyperplane that has a maximum distance to the closest data

points of both classes respectively. The margin is defined by those points which are called

support vectors (Fig. 2.2). For classification, we calculate f(x) = sign(wTx + b) where w

Figure 2.2: An illustration of how support vector machines realize classifications. Black dots
and white triangles represent two classes of data points (adapted from Manning et al. [2008]).

is a weight vector orthogonal to the decision hyperplane, x is the input data point, and b

an intercept. Training an SVM is an optimization problem which can be solved with, e.g.,

the Lagrange multiplier, denoted as αi. Then,

w =
∑

αiyixi
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b = yk(1− ζk)−wTxk where k = arg max
k

αk

where yk is the label of data point xk and all αi 6= 0 are the support vectors. For all

α it hols that 0 ≤ α ≤ C, where C is a regularization term to control overfit. ζ is a

slack variable that allows the classification with a soft margin, i.e., drawing a margin that

classifies some training data points incorrectly for a penalty equals to ζ. The classification

function then is f(x) = sign(
∑
αiyix

T
i x + b). There, however, exists much faster, more

scalable solutions for training SVMs that I will not thematize.

Until now we were only able classifying linearly separable classes. Unfortunately, classes

are mostly not linearly separable in document classification. A solution to this is to apply

the kernel trick to find a higher dimensional space in which the data points are linearly

separable. To do so, we use a function Φ : x 7→ φ(x). It suffices to only calculate the

result of the dotproduct φ(xTi )φ(x) in this higher dimension space. Φ is called the kernel

function of which several exist. One popular kernel function is the radial basis function

which is defined as

ΦRFB(xi,x) = exp(−γ(xi − x)2), γ > 0

with γ being the kernel function coefficient.

2.2.5 Logistic Regression

The logistic regression, similar to linear regression, is commonly used for classification in

ML. It uses the logistic function, also called sigmoid function and is defined as,

σ(x) =
1

1 + ex

that is used to map the output of a linear model to ŷ ∈ [0, 1],

ŷ = σ(wTx + b)

where the weights w are adjusted during training to minimize

`(y, ŷ) = −
n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi)

with y being the true label, x the n-dimensional input, and b a bias value.

The loss can be minimized using gradient descent (as used in backpropagation in

2.2.7.2). Usually, more optimized methods are used.

To avoid overfitting, we can apply a penalty, for example, L2 which adds a term

dependent on w to the loss ` to force the model to choose smaller weights. L2 is defined

as C
∑n

i=1w
2
i with C being the regularization strength where larger values of C increase
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the penalty.

The logistic regression classifier in NLP is used to classify based on embeddings, e.g.,

document classification where the document embedding is used as the input to train the

logistic regression. Note, the output ŷ is not strictly binary; thus, we need to apply a

threshold where typically values above 0.5 are classified as 1 and 0 otherwise.

2.2.6 k-Nearest Neighbor Classifier

The k-nearest neighbor classifier performs instance-based learning which means it has no

training time. It remembers all training data points and then classifies a new input based

on its k-nearest neighbors, where each data point xi is a vector with a label yi and k ∈ N.

The closest points can be calculated using several metrics. Most often, Euclidian distance

(‖xi−xj‖2) is taken to find the k nearest neighbors for classification. Closer points can be

weighted stronger for the classification. The predominant label of the k-nearest neighbors

(with or without weighting) is taken to be the classification of the new input. Typically, a

small k is less robust against noise while a large k might not be specific enough.

2.2.7 Deep Learning

The idea to model the brain led to the development of the perceptron, which is a formal

and simplified replica of a biological neuron. With the development of the backpropagation

algorithm, it was then possible to stack several perceptrons and develop the multilayer

perceptron which was capable of image and vowel classification [Russell and Norvig,

2009], also referred to as neural networks. For a long time, training these models was

computationally expensive and thus limited to small-sized neural nets. This long believed

limit changed only recently with AlexNet [Krizhevsky et al., 2012] which used graphics

cards to stem the massive computational demand to train deep neural networks.

2.2.7.1 Perceptron

A perceptron is an algorithm inspired by biological neurons. It is a binary classifier

that learns by adjusting its threshold to fire an action potential when the correct class is

detected. Formally it is

Perceptron(x) =

1 if w · x + b > 0,

0 otherwise
(2.20)
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where x is a data vector, w the weight vector and b the bias. It is trained in a supervised

fashion. The learning step with which w is adjusted is defined as,

w(t+ 1) = w(t) + η(d(t)− y(t))x(t)

with d being the desired output and y the output of the perceptron at training step t with

a learning rate η ∈ (0, 1].

2.2.7.2 Multilayer Perceptron

A multilayer perceptron (MLP) (Fig. 2.3) consists of three types of layers, an input

and output layer, and 1 . . . n hidden layers. Each layer consists of an arbitrary number of

perceptrons. The activation function is not a Boolean function but σ(y) = 1
1+e−y called

the sigmoid function. Its output also ranges from 0 to 1, but it is derivable. Derivability

is crucial since the MLP uses backpropagation to be trained which is defined as,

E(w)t ≡
1

2

∑
(dt − yt)

2 (2.21)

∆w = −ηδEt
δw

(2.22)

where E is the sum over the errors over all output neurons at step t and ∆w is the weight

adjustment according to the backpropagated error δEt

δw
that is the partial derivative of the

error given all the weights with a learning rate η. The minus sign indicates that the weight

is adjusted downwards the estimated gradient (minimization).

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.3: A illustration of a multilayer perceptron. The input (green), hidden (purple), and
output (red) layer consists of four, five, and one perceptron respectively. The arrows indicate the
direction of the computation of the input which is a scalar.
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2.2.7.3 Convolutional Neural Network

While the MLP is only capable of receiving a single input vector at a time, the convolu-

tional neural network (CNN) can process an input matrix. The additional dimension

can then represent time or spatial dependencies. So-called feature maps extract these

two-dimensional features in the hidden layers. Feature maps are usually smaller than

the input matrices, and they consist of real-valued weights that are adjusted during the

training process. These feature maps are striding over the input and apply a convolution,

C(i, j) = (I ∗ F )(i, j) =
∑
m

∑
n

I(m,n)F (i−m, j − n)

where ∗ is the convolutional operator, I is the input matrix, F the feature map, and C(i, j)

the output for the convolution at position (i, j) of the feature map. The output matrix C

of the convolution step is then pooled which is, i.e., the maximum or average value of C.

In the end, a fully connected layer (an MLP where every neuron is connected with each

neuron) incorporates all information and yields a classification (Fig. 2.4).

Figure 2.4: An illustration of an n-gram convolutional neural network. The input is a numerical
representation (2.2.8) of a tokenized text. The convolution over the input matrix is represented
as a red and yellow box (called feature map) that is then pooled (maximum of the kernel). The
classification is then enforced by a fully connected layer that incorporates the input of all feature
maps.

2.2.8 Embeddings

In 2.2.1, I introduced the bag-of-words approach to cope with the difficulty to explicitly

model language, and in 2.2.3 I showed that this approach even facilitates a good per-

forming classifier. However, the bag-of-words approach models language incorrectly and

having a better representation of language is more desirable for the improvement of ML

algorithms. Word embeddings are such methods that model language more accurately
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by representing words as n-dimensional vectors that much better capture syntactic and

semantic characteristics of language.

2.2.8.1 Word2Vec

In 2013, Mikolov et al. published two algorithms to compute high quality distributed

representations of words and phrases efficiently. Both these algorithms are also referred

to as word2vec. The general approach in both algorithms is to maximize the similarity

measures of vectorized words that appear in a similar context. The continuous bag-of-

words model is trained to predict the vector representation of a word or phrase given

n words before and after the target word in its sentence. The continuous skip-gram-

model is a slower implementation with the benefit to model uncommon words better

[Code Google, 2013]. The skip-gram-model tries to predict the context given a target word

and is thus the opposite approach of the continuous bag-of-words model.

In practice, we generate labeled data in the form of tuples (wt,wc1 , . . . ,wcn), where

one entry is the target word wt, and the other entries are context words wc. The tuple

can either contain actual context words found in the text, or random words from the

vocabulary (negative sampling). The embedding layer learns the weights of the input

and context words, by yielding an n-dimensional vector for all these words, calculates the

dot-product of the target and context vectors in the merge-layer, and then passes it to a

sigmoid layer that predicts whether the words are actual context words or were negatively

sampled. The objective of the algorithm is to maximize∑
t∈T

∑
c∈Ct

log(p(Wc|wt))

where w is the vector representation of a word, t is the target word and Wc the context

matrix, where each row is a vector representation of a context word.

2.2.8.2 GloVe

Word2vec embeddings are local since only n surrounding words are considered to calculate

the embedding. GloVe, on the other hand, also tries to incorporate global information

about word occurrences.

As the first step, a word co-occurrence matrix over all documents is calculated. The

underlying assumption of GloVe is that the co-occurrence ratio is connected to meaning.

Let Xij be the co-occurrence count of token j in the context of i. Let Xi =
∑

t∈T Xit be the

occurrence of token i given any other token then p(j|i) =
Xij

Xi
is the probability of token j

appearing in the context of token i. To be able to model the semantic information of words,

their relationship needs to be modeled. GloVe defines a function F ((wi −wj)
T w̃t) = p(i|k)

p(j|k)

where w is a real-valued word vector. Hereby, the context words are subtracted from
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the input words, and the dot product with the weights of the output vocabulary is taken

(see Pennington et al. [2014] for details). This step facilitates embedding arithmetic, i.e.,

the meaning of word embeddings can be deducted from arithmetic calculations such as

wman +wroyalty = wking. Further steps are required for computability, such as weighting of

the word vectors or handling zero entries which are described by Pennington et al. [2014].

2.2.8.3 Document Embedding

If an algorithm only needs to operate on the document level, then the whole document

can be embedded. A simple approach is to take the mean or the maximum of all word

embeddings of a document. There are also more elaborated methods [Wu et al., 2018; Liu

et al., 2018; Dai et al., 2015] that have a learning objective, similar to word embeddings.

However, their downside is the demand for a large corpus to learn a meaningful document

embedding which is not available in the scope of this thesis.

2.2.9 Web Scraping

The process of automatically extracting content available on the world wide web is called

web scraping. It is different from web crawling, where the primary purpose is the

following of hyperlinks on websites to index the linkage between pages. However, both

techniques can be combined to systematically search for some specific content within a

network of websites, e.g., crawling flight provider sites and monitor their prices.

2.2.9.1 HTML and CSS

Hypertext Markup Language (HTML) is a markup language which means that it

consists of a set of tags that define how the content of a document needs to be interpreted.

In HTML, for example, <h1> I am a Header </h1> defines the opening of a header tag

followed by some content and the closing of this tag. When this HTML code is interpreted,

the text is then displayed bold and larger than non-header text if not specified otherwise.

Cascading Style Sheets (CSS) is a style sheet language that is used for styling

HTML code. Given the example above, we could modify the header to have another color,

<h1 style="color:red"> I am a Header </h1>. It is also possible to define a CSS

class and use this class to automatically apply several styles such as in Lis. 1, This way,

.header {

color: red;

font-family: verdana;

}

Listing 1: CSS class named header that sets the font to verdana and color to red when used.

we can apply the style like so <h1 class="header"> I am a Header </h1>. While a
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class can be accessed from several HTML tags, there is also a CSS id that can only be

accessed once in one HTML file but otherwise has the same functionality as a CSS class.

Both languages thereby reveal a way of filtering the content of a website. Web scraping is

exploiting HTML tags and CSS selectors like classes or ids to filter the content of a site.

Important tags for scraping are the paragraph tag <p> that normally contains text

intended for the reader of a website and the <a> tag that contains hyperlinks. By

investigating websites thoroughly, one might also find a schema in the assignment of CSS

selectors that can be exploited during web scraping.

2.2.9.2 REST

Most websites offer a web service which is a broad term for some user interface that allows

the communication to a database and optionally performs some operation on this data.

The usual implementation of an application program interface is the Representational

State Transfer (REST), and its methods are GET, POST, PUT, PATCH, and DELETE

which are often executed via HTTP. The most important method in web scraping is the

GET method since it retrieves data. It is sometimes necessary to understand how GET

requests are made on a website to use them for automated content extraction.

2.2.9.3 Ajax

Should the client (user) request data from a database via a website and a reload of the

site is undesired, Ajax allows an asynchronous data retrieval. This asynchronous GET

request starts on an event (e.g., clicking on a button on the website). Ajax is frequently

used to reduce loading time and traffic to only refresh the necessary part of a website. One

framework to use Ajax is jQuery which is mostly used in combination with JavaScript

that is required to integrate the retrieved data into the website.

A problem of scraping and crawling programs is that content, which is only visible after

Ajax has requested it, is not visible to the program. Therefore, it might be necessary to

monitor the website’s behavior via the developer mode of a web browser and see which GET

requests would retrieve the data of interest or trigger the Ajax calls programmatically.
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CHAPTER 3

Methods

3.1 Requirement Analysis

At the beginning of my work, I needed to assess the suitability of several possible targets at

the RKI for NLP. Therefore, if applicable, I monitored the functioning of the target groups

and evaluated the text sources they used. The direction of the thesis was determined by

the possible gain for their work practices through NLP and the exploitability of their used

sources.

Below, I introduce available targets, and why they were or were not suitable for the

proceedings of this thesis.

3.1.1 RASFF

The Rapid Alert System for Food and Feed (RASFF) has been established by the European

Union (EU) to share information for effective food safety. As a member of the RASFF, the

RKI receives PDFs about recent incidences of contaminated food. Such a PDF contains

several prototypical information about the contamination.

However, the documents are strongly formatted, and my attempts to extract the text

from the PDFs without altering the structure of the report failed. I used Tika (3.2.7) for

the text extraction, but the return contained misplaced line breaks and other formatting

errors. Due to these complications and difficulties to extract text from these PDFs without

optical character recognition, I decided not to work with RASFF reports for my thesis.

3.1.2 EpiLag

Due to the majority of communication in the EpiLag happening orally and the sources

mainly being reports from medical practices, hospitals, and emails, EpiLag poses an
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ambitious target for NLP methodology. Without a clear in- and output, there is no clear

approach to process the data of EpiLag.

3.1.3 EPIS

As the RASFF, the Epidemic Intelligence Information System (EPIS) is also an EU project.

It is a web tool that allows several EU members to report possible or confirmed disease

outbreaks. To stay up-to-date, EPIS has an email notification system, and every outbreak

report is downloadable as a formatted Excel sheet.

The downside of EPIS is a missing source for reported outbreaks. Mostly, local health

departments detect these events which are then shared through EPIS leaving out how they

were discovered. This procedure makes the comparison of events difficult especially when

different countries do not share the same definition for a disease outbreak. Though the

formatted data output of EPIS would have been ideal for my further work, the regulations

on how to process EPIS data were unclear and partially restrictive which excluded to

further work with EPIS data.

3.1.4 INIG

INIG has a curated list of sources that they visit every day and check for new alerting

events (Tab. 4.1). The list consists of a various set of sources where some are frequently

reporting and some less but in more extent. Also, the data format is different and can be

a simple HTML website, PDF, or email. The rather easy and public access to the used

sources, the clearly defined in- and output, and necessary active acquisition of information

as described in EBS makes INIG a good fit for my topic.

3.2 Libraries

In the following sections, I am introducing the most important libraries I used for my

work. The list lacks libraries that are common for data-driven work with Python or are

part of the standard library.

3.2.1 NLTK

The Natural Language Tool Kit (NLTK) is an established and large package for NLP.

It has 50 corpora and lexical resources as well as all important algorithms to build an

NLP-pipeline as in Fig. 2.1. NLTK was built initially to teach NLP and thus, contains

also outdated algorithms in the field of NLP.
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I used the stop word list, and the word and sentence tokenizer provided by NLTK.

Furthermore, I used the multinomial NBC in NLTK to investigate the features with the

highest explanatory power for classification, i.e., words that influence the classification

decision by the NBC the most.

3.2.2 EpiTator

EpiTator is an epidemiological annotation library that is mainly used by GRITS. I used

the following features of EpiTator in my thesis:

• EpiTator’s count annotator that extracts the glyph and word representation for

numbers and associated attributes, e.g., “5 cases of smallpox” will detect 5 as a

count and cases as its attribute

• The date annotator that extracts dates and date ranges from a text

• EpiTator’s geoname annotator that extracts all geographical entities from a text

• Finally, I also used Epitator’s resolved keyword annotator, that uses an SQLite

database of entities to detect disease entities from multiple synonyms of infectious

3.2.3 SpaCy

SpaCy is an industrial NLP library that contains every basic algorithm as illustrated in 2.1,

but also newer methods from the field of deep learning such as CNNs and word embeddings.

Additionally, SpaCy is written in the much faster CPython language. Altogether, speed

and a selection of only the best-performing algorithms for NLP tasks give SpaCy the

industrial strength.

I used SpaCy’s text classification module which uses a simple CNN. SpaCy is also

mainly used by EpiTator for preprocessing. Saving the output of EpiTator was difficult

because SpaCy is not trivial to serialize. Therefore, I needed to transform the output of

EpiTator such that it did not contain SpaCy dependencies anymore.

3.2.4 Flair

Flair is a small library that only contains state-of-the-art algorithms in NLP. It does not

directly provide preprocessing such as stop word removal, tokenization, or stemming but

does the preprocessing automatically depending on the final task.

Flair has a powerful word embedding module with a larger array of customizations

which I used for the text classification pipeline.
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3.2.5 Beautiful Soup

Beautiful Soup is a package to parse HTML and XML as a tree structure that can be

traversed. Given the structured access to HTML content via tags, classes or ids, web

scraping is much simpler with Beautiful Soup. I performed web scraping solely with

Beautiful Soup.

3.2.6 Boilerpipe

Boilerpipe is a Java package that uses shallow text features (word count, hyperlink density,

and position of text block) to remove boilerplate (advertisement, navigation bars,. . . )

from websites [Kohlschütter et al., 2010]. There exists a Python package that calls the

Boilerpipe Java code from a Python environment.

Although it would have been possible to write the web scrapers such that they would

only extract the main content, I wanted to have a solution that allows expanding the work

of my thesis to more websites without the necessity to write a special scraping program for

each site. Thus, I wrote scrapers that extract the whole HTML content of a site containing

some outbreak article and then used Boilerpipe to obtain the main purport.

3.2.7 Apache Tika

Apache Tika is a broad content analysis framework for text and metadata extraction from

over a thousand data types that I used for text extraction from PDFs.

3.2.8 Luigi

Luigi is a pipeline builder made by Spotify. It manages different jobs, coordinates

dependencies, and visualizes them. With Luigi, I modularized my work in case there

is a necessity to modify or replace certain parts of my pipeline. Furthermore, Luigi

automatically serializes the outcome of long and tedious computations such as scraping.

3.2.9 Flask

Flask is a web development mini-framework for Python. To demonstrate the final product

which is capable of extracting the main content from some URL, annotating and evaluating

this content, and then putting this information into a database, I built a web app using

Flask.
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3.3 Data Acquisition

After the decision was made to focus on data associated with INIG, I pinpointed the most

important sources used by INIG, namely WHO DONs and ProMED Mail (4.1.1), to build

a labeled dataset. In the following, I show the necessary data required for the labeling,

building, and preprocessing of the dataset.

3.3.1 Incident Database - Ereignisdatenbank

The Ereignisdatenbank (EDB) is an Excel sheet (Fig. 3.1) and the primary recording

method of the work of INIG. They track various parts of their work in this sheet but most

Figure 3.1: A screenshot of a part of the Ereignisdatenbank (Incident Database) Excel spread-
sheet.

importantly they enter every critical outbreak article into the EDB. Every entry consists

of several columns, of which only some are mandatory such as the reported disease, the

country of origin, the number of confirmed cases, and the case number’s reporting

date. All WHO DON and ProMED Mail articles and the corresponding key information

placed in the mandatory columns of these articles serve as training examples for the later

mentioned classification algorithms.

3.3.2 WHO DONs

The WHO regularly publishes the latest disease outbreak news (DONs) as a publicly

available web resource. It is a low output source with only a handful of reports every

week. All WHO DONs are archived, sorted by year and month, and therefore can be

systematically accessed.
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I wrote a scraper that accesses the archive URL and then, based on the function

parameter, visits the URL with the requested time range and scrapes the content (Lis. 2).

# Obtain annual report archive links

page = requests.get('http://www.who.int/csr/don/archive/year/en/')

soup = BeautifulSoup(page.content, 'html.parser')

archive_years = soup.find('ul', attrs={'class': 'list'})

all_years_links = archive_years.find_all('a')

years_as_links = ['http://www.who.int' + link.get('href')

for link in all_years_links]

# Obtain all report URLs per year

for year_link in years_as_links:

page_year = requests.get(year_link)

soup_year = BeautifulSoup(page_year.content, 'html.parser')

archive_year = soup_year.find('ul', attrs={'class': 'auto_archive'})

daily_links = ['http://www.who.int' + link.get('href')

for link in archive_year.find_all('a')]

Listing 2: An extract from the WHO DONs scraping script usgin BeautifulSoup. The algorithm
starts with extracting the content of 'http://www.who.int/csr/don/archive/year/en', then
filters the URLs for those referencing archived reports sorted by years with the help of the ul

tag and list class. To extract all DONs per year, the auto_archive class is used. All links are
found in the a tag and href selector.

3.3.3 ProMED Mail

In contrast to WHO DONs, much more authors are contributing to ProMED Mail and

generate higher output. Usually, ProMED publishes around a handful of disease outbreak

articles a day. ProMED mail content is dynamically loaded via Ajax and therefore not

directly accessible. Through the analysis of the website, I reverse engineered the article

search of the website to write a function with which I can scrape ProMED article given a

time range shown in Lis. 3. Access to the page number (shown in Lis. 3) is necessary since

after 200 pages the GET request returns an error although there would be more pages.

The full algorithm iterates over 200 pages given a time range, remembers the date of the

oldest ProMED article from this search and reruns the search with the initial temporal

lower bound and the date of the last retrieved article as the newer upper bound.

3.3.4 Wikipedia - Liste der Staaten der Erde

I scraped the Wikipedia Liste der Staaten der Erde (List of Sovereign States) article and

transformed it into a dictionary to translate the German country names of the EDB into

English. The translation is a crucial step to match the countries in the EDB with the

output of EpiTator to automatically create a labeled dataset (3.4). The List of Sovereign
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def get_content_of_search_page(from_date, to_date, page_num):

return (requests

.get(f'https://www.promedmail.org/ajax/runSearch.php?'

f'pagenum={page_num}&'

f'search=&date1={from_date}&'

f'date2={to_date}'

)

.content

.decode('utf-8')

)

Listing 3: The ProMED scraping core function. It executes a formatted Ajax
GET request (indicated as a string in the requests.get method) for a certain date
range and page number which returns a list of ProMED article URLs in the form of
'https://www.promedmail.org/direct.php?id=6400233'. Everything in curly brackets is re-
placed by the function parameters.

States contains, besides others, the state’s common, formal, and English name, and also

the ISO-2 and ISO-3 abbreviation. The code for scraping the table from the Wikipedia

page is shown in Lis. 4

# Request the HTML content from Wikipedia and parse it with BeautifulSoup

page = requests.get("https://de.wikipedia.org/wiki/Liste_der_Staaten_der_Erde")

soup = BeautifulSoup(page.content, "html.parser")

# Find table with all countries with HTML tag "table",

# the CSS class "wikitable sortable zebra", and the "tbody" tag

table_soup = soup.find("table", class_="wikitable sortable zebra")

body_soup = table_soup.find("tbody")

# Get entries of all countries form table

country_soup = body_soup.find_all("tr")

Listing 4: The Python code extract to scrape the Liste der Staaten der Erde table from
Wikipedia using BeautifulSoup. The table is extracted using the table, tbody and tr tag and
the wikitable sortable zebra class.

3.3.5 Wikidata and RKI-Internal Data

I queried all disease names in German and English from Wikidata (Lis. 5) and used them

as a dictionary to transform all German disease names of the EDB to English to be able

to match them with EpiTator’s output to create a labeled dataset (3.4). Additionally, I

used a list of RKI-internal abbreviation to translate them to their full English name.
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endpoint_url = "https://query.wikidata.org/sparql"

query = """SELECT Distinct ?itemLabel_DE ?itemLabel_EN WHERE {

?item wdt:P31 wd:Q12136.

OPTIONAL{

?item rdfs:label ?itemLabel_DE.

FILTER (lang(?itemLabel_DE) = "de"). }

?item rdfs:label ?itemLabel_EN.

FILTER (lang(?itemLabel_EN) = "en").

}"""

disease_translation_dictonary = get_results_of_sparql(endpoint_url, query)

Listing 5: The SPARQL request extract made to retrieve a list of tuples with the German and
English disease name from Wikidata where wdt:P31 wd:Q12136 is the item name of the disease
list in Wikidata.

3.4 Preprocessing

The EDB is an unstructured Excel sheet which means that the data types were not

restricted, no uniform vocabulary was used, and formatting errors occurred several times.

After introducing the EDB, and the scraping of dictionaries to transform EDB entries

into English, I show the necessary steps to clean the EDB, make it machine-readable, and

transform it into a controlled English vocabulary to be comparable with the output of

EpiTator for label creation.

3.4.1 Variables

The EDB has many entries where only a handful is mandatory. During the preprocessing,

I only kept the entries that were mandatory to fill which are the URL of the article, the

disease, the country of the outbreak, and the confirmed case count with the date

(of the count).

The preprocessing steps were the removal of empty rows, trailing white spaces, and the

split-up of several entries in one cell to several rows or the merge of redundant columns

to be in accordance with the tidy data concept [Wickham, 2014]. The crucial part of

the preprocessing was, however, the transformation of the variables into a controlled

vocabulary.

3.4.2 Controlled Vocabulary

Dates The dates needed to be transformed into a pandas Timestamp object on which

arithmetic operations and comparisons are possible. This was done with the totimestamp()

method of pandas. If the method is provided with the information whether date or month

is put first, totimestamp() automatically recognizes several forms of dates and transfers
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them into the correct Timestamp object.

Counts Every case count entry in the EDB was cleaned from any non-digit entry. In

the case of several numerical values, the first one was taken.

URLs I removed invalid URLs, and transformed ProMED URLs into a uniform style.

The ProMED URLs in the EDB are written with both, http and https as a protocol.

Furthermore, ProMED URLs in the EDB are written like 'https://www.promedmail.org
/post/6400233', as an example, or without www. preceding the URL. However, to be

consistent with the scraped URL format returned by Lis. 3, I transformed all URLs into

the form 'https://www.promedmail.org/direct.php?id=6400233'.

Countries and diseases Country and disease names needed to be translated to make

them comparable to the output of EpiTator. Therefore, I used the scraped dictionaries,

as in 3.3.4 and 3.3.5, through which I eradicated spelling mistakes and translated these

words to English. The procedure is shown in Algo. 1.

3.4.3 NLP-Pipeline

The WHO DONs and the ProMED Mail articles needed to be prepared for the ML

algorithms. In the following, I describe the steps of the NLP-pipeline each text underwent

before being fed into a classification algorithm.

3.4.3.1 Literal Processing

For all scraped websites, I replaced UTF-8 control characters with a single whites-

pace character illustrated by the following Python code: string = "".join(char if

unicodedata.category(char)[0] != "C" else ' ' for char in string).

3.4.3.2 Embedding

I used Flair to apply pretrained GloVe embeddings with 50 dimensions on each token of

the dataset. GloVe has the advantage to cover global textual information better (2.2.8.2).

The small size of the word embeddings was important to keep computational time low to

increase the number of test iterations.

For an embedding comparison, I trained my own word embeddings using scraped

ProMED and WHO DON articles. Since GloVe’s global property was not necessary for

the small corpus and due it high memory demand, I trained 50-dimensional embeddings

using word2vec with the continuous skip-gram approach. This approach better captures

rare words (2.2.8.1) which are typical for expert literature like epidemiological articles.
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Input: t¬controlled
Result: tcontrolled
/* Initialize */

dictionary : K¬controlled → Vcontrolled;
if t¬controlled ∈ K then

return dictionary(t¬controlled);
else

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

/* Where lev is the Levenshtein distance of word a and b at

string i of a and j ob b. */

tcorrected ← arg mink∈K lev¬controlled,k;
if tcorrected ∈ K then

return dictionary(tcorrected);
else

tcorrected ← endsOrStartsWith(t¬controlled, dictionary);
return dictionary(tcorrected);

end

end
Algorithm 1: Translation algorithm to transform input to controlled vocabulary. If
initially, no translation is available, the most similar written word is chosen using
the Levenshtein distance leva,b(i, j). The word k ∈ K with the shortest Levenshtein
distance to the input word t¬controlled is picked to correct the input word. If there is
still no match to the controlled vocabulary, the algorithm assumes a shortened form
and searches for an overlap in the first or last letters of the strings. Otherwise, no
match is found.

3.5 Classification

I tested two methods for the key information extraction: First, taking the most frequent

entity occurring in a text as the key entity (e.g., making the most common disease entity

the primary thematized disease in the text) and second, train a classifier based on sentences

that contain such entities. The training data were all sentences-tokenized ProMED and

WHO DON articles of 2018. Sentences containing the keywords found in the corresponding

EDB entry are the positive training labels. All other sentences containing keyword entities

of the same category (e.g., confirmed cases) recognized by EpiTator, but are not found in

the respective EDB entry, are counterexamples for the classifier.

Furthermore, I trained a classifier to be able to distinguish between relevant and

irrelevant outbreak news based on the whole text, and based on the embeddings of the

text.
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The full pipeline of all steps necessary before the assembly of the labeled training

dataset is depicted in Fig. 3.2

WHO DONs URLs of 2018

ProMED URLs of 2018

Cleaned EDB of 2018

Wikidata Disease List

Wikipedia Country List

Disease Dictionary

Country Dictionary

Controlled Vocabulary 
EDB

Training Dataset

Scraped WHO DON Articles

Scraped ProMED Articles

Figure 3.2: A depiction of all the dependencies during the assembly of the labeled training
dataset.

3.5.1 Naive Keyword Extraction

During the reading of epidemiological news, I noticed that the key entities of a text

are repeatedly mentioned. Therefore, I decided to naively determine a keyword entity

by choosing the most frequent entity, i.e., the key disease entity would be the disease

mentioned most frequently as shown in Lis. 6.

def return_most_occurring_entities(list_of_entities):

list_of_entity_occurrence_tuple = [(key, len(list(group)))

for key, group

in groupby(sorted(list_of_strings))]

most_occurring_string = max(list_of_entity_occurrence_tuple,

key=itemgetter(1))[0]

return most_occurring_string

Listing 6: A simplified Python function to detect the most occurring entity in a list of entities.

3.5.2 Naive Bayes Classifier

I used the multinomial and complement NBC for the text classification using all WHO

DONs and ProMED Mail articles of the year 2018. Articles denoted in the EDB are

labeled relevant and the rest is labeled irrelevant. I applied tf-idf to balance term frequency

discrepancies and removed stop words using NLTK’s stop word list.

For the keyword extraction, I used the multinomial and Bernoulli NBC on labeled

sentence-entity tuples. Sentences of texts that contain entities found in the corresponding

EDB entity entry are labeled as is key whereas the rest is labeled is not key. I kept the

stop words for the keyword extraction since I was expecting formulations such as “112

confirmed cases as of 07.05.2018”, where “. . . as of. . . ” is an indicator for a key date

(4.2.1).
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3.5.3 Support Vector Machine

For the text classification, I used the average of all word embeddings as the document

embedding with which I trained an SVM, using the radial basis function as the kernel.

This kernel is better suited to classify not linearly separable classes. I chose a penalty

parameter C = 1 to avoid overfitting to the imbalanced classes. Finally, I chose a kernel

function coefficient of γ = 1
50

which is a standard value based on the number of features,

in this case, the length of the document embedding vector.

3.5.4 Logistic Regression

For the text classification, I used the average of all word embeddings as the document

embedding with which I trained the logistic regression classifier. I applied L2 regularization

with a regularization strength C = 1 to avoid overfitting to the imbalanced classes.

3.5.5 k-Nearest Neighbor

For the text classification, I used the average of all word embeddings as the document

embedding with which I trained a k-nearest neighbor classifier with k = 5 to balance

sensitivity to noise, as for small k. Furthermore, I used the Euclidian distance to measure

distances and did not weight the distances.

3.5.6 Deep Learning

During the text classification, I used the average of all word embeddings as the document

embedding. First, I fed it into a multilayer perceptron with 100 neurons in the hidden

layer, a rectified linear unit as the activation function, the Adam optimizer using the

default values during training, and L2 penalty to avoid overfitting. Also, I used a CNN

to iterate over all word embeddings using an automatically selected feature map size by

SpaCy, and average pooling. For the classifier trained on embeddings, I used ADASYN to

upsample the minority (relevant) class of the dataset.

3.6 Web App

Using Flask and DataTables, I built a web app that allows the entry of an URL where

then the text is extracted, summarized, and put into a database which can be downloaded

in various formats. The web app also contains a method to start an automatic scraping of

all articles from a specified source up to the last analyzed article from this source. These

texts are then annotated and dumped into the database.
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CHAPTER 4

Results and Evaluation

4.1 EDB Analysis

A substantial part of my work was the exploitation of the EDB and the scraped epidemio-

logical news. In the following, I introduce how I recovered parts of the EDB for my further

analyses and how I managed to scrape a large amount of epidemiological data with a

limited time profile.

4.1.1 Source Determination

Before I could train a classifier to detect relevant articles or extract meaningful key

information from texts, I needed to create a labeled dataset from the EDB. Therefore, I

needed to collect all articles that were read as part of INIG’s surveillance routine. However,

writing scripts for IR (such as scraping) can be time-consuming, so I needed to narrow

down the, at that moment, 75 sources used in the EDB.

The decision which source to extract was then made in regard to the relevance and the

complexity to retrieve information from this source. First, I extracted all URLs from the

EDB and clustered them based on their netloc (a first level domain such as www.rki.de)

to rank the URLs according to their frequency (Fig. 4.1) to then only focus on the most

used sources. Then, I pinpointed those sources that are the most accessible. To do so,

I evaluated INIG’s reading checklist which includes all sources that are mandatory to

observe. In this evaluation, I determined the data type, conducted exemplary information

extractions to assess the accessibility, and evaluated the relevance of these sources by

their articles (Tab. 4.1). Generally, information extraction from PDFs and Emails was

more difficult. PDFs, unlike HTML, do not consist of a markup language where specific

information can be individually extracted. Emails, on the other hand, were difficult to

access due to privacy reasons and the information in them was usually less structured.
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Figure 4.1: The netloc frequency of the most used sources of the EDB. Shown in grey is the
sum of EDB entries referencing the other 67 netlocs not shown in this figure.

Table 4.1: An evaluation of INIG’s reading checklist by source, data quality, and accessibility.
The data format refers to the final data format of the epidemiological text. The data quality
describes whether a source only contains information relevant for epidemiological surveillance or
also research findings and ongoing projects (mixed content). The difficulty evaluation is based
on exemplary IR from these sources where easy posed no difficulty, intermediate would have
required additional work but was promising to function and hard was unsure whether it could
work satisfactorily.

Source Data Format Data Quality Accessibility

CIDRAP HTML Mixed content Intermediate
ProMED Mail HTML Only relevant Easy
WHO DONs HTML Only relevant Easy

EIOS daily digest Email Only relevant Hard
OutbreakNewsToday HTML Mixed content Intermediate

ECDC Report Email Only relevant Hard
WHO Afro Bulletin PDF Only relevant Hard

EuroSurveillance PDF and HTML Mixed content Intermediate
WHO WER PDF Mixed content Hard

ECDC CDTR PDF Only relevant Intermediate
WHO EMRO PDF Mixed content Hard
WHP PAHO PDF Only relevant Intermediate

The final decision was to then to scrape ProMED Mail article (163 entries in the EDB),

and WHO DONs (22 entries in the EDB) indicated by www.who.int in Fig. 4.1. Both are

the most used HTML sources of the EDB that are also easy to scrape and only contain

relevant information. Cidrap and OutbreakNewsToday, although being quoted more often
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than WHO DONs, also publish non-epidemiological articles and are harder to scrape

wherefore I disregarded them. In sum, articles from 185 EDB entries (of 557) were scraped

for the assembly of a labeled dataset using only two scrapers. Note, apps.who.int in Fig.

4.1, also part of WHO, is not a WHO DON but includes several epidemiological bulletins

that are published as PDFs.

4.1.2 Data Quality

Due to the unrestrained column settings, every entry in the EDB was free text with

spelling mistakes, inconsistent formatting, or left empty. The transferral of the EDB into

a controlled vocabulary, as described in 3.4.2, was a vital step since it made more data

points useable. Tab. 4.2 shows the performance of the data preparation.

Table 4.2: A performance measure of the transmission of the EDB to a controlled vocabulary.
The table shows the number of valid entries before and after the preprocessing and the number
of empty columns per keyword. The numbers refer to the whole EDB with 557 entries. The
numbers in parentheses refer to the training dataset with 155 entries quoting ProMED or WHO
DON articles.

Keyword Valid Before Valid After Invalid After Empty Before
Preproc. Preproc. Preproc. and After Preproc.

Date 168 (37) 229 (141) 19 (7) 309 (7)
Case count 299 (87) 394 (105) 18 (0) 145 (50)

Country 355 (15) 494 (148) 17 (4) 46 (3)
Disease 231 (0) 332 (111) 16 (16) 209 (28)

The transferral to the controlled vocabulary retrieved around 100 keywords per keyword

column for the full EDB. Typical invalid entries for dates were dates formulated as free

text like “the first two weeks in May”. Another common mistake the entering of symptoms

instead of diseases. A typical invalid country entry contained a city or region name instead

of the country. Of 185 EDB entries referencing ProMED and WHO DON articles, 155

used valid URLs. Of the 30 invalid URLs, 8 were ProMED URLs without an article id but

just ("www.promedmail.org"). The reason why only the first level domain was entered so

often is the dynamical loading of articles in ProMED. When a user reads different articles

on ProMED, the URL does not change. The person who wants to enter a ProMED article

into the EDB needs to open the printable version of the article in order to see the unique

URL of this article. The other URLs were correctly written but referred to articles that

were not available anymore which happens when articles are withdrawn.

Nevertheless, the preprocessing was able to increase the number of usable data points.

For the datasets for key information extraction, 141 EDB entries with a valid date could

be retrieved and 105 entries with a valid count. For the testing of the naive keyword
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selection (Lis. 6) I additionally retrieved 148 entries with valid country names and 111

entries with a valid disease name.

4.2 Key Information Extraction

Although EpiTator extracted only relevant entity classes, they still needed to be filtered

for the key entity of this class, i.e., the one that would need to be put into the EDB. To

do so, I used the most frequent entity of an entity class. For example, when Epitator finds

relevant disease names the most frequent one is chosen (Lis. 6).

First, I used the naive key information extraction as a baseline. This worked well

for the disease and country key information extraction but not for the date and count

extraction. Thus, I trained a multinomial and Bernoulli NBC using all sentences of a text

containing a specific entity class. The label is key was given to those sentences where the

extracted entity matched the entity class found in the EDB for this text and is not key to

the others.

4.2.1 Results

Except for one occurrence of a disease that was not recognized by EpiTator, all countries

and diseases were detected correctly using the naive key information extraction. However,

this approach performed poorly for the key information extraction of count and date

entities. Only 12 count entities of 105 were correctly retrieved (recall of 0.11 for the is key

class and IBA of 0.10) following the naive approach and no date entity out of 141 (recall

of 0.00 for the is key class and IBA of 0.00).

The performance of both classifier for the key information extraction of count entities

is shown in Tab. 4.3 and for date entities in Tab. 4.4.

Regarding the recall of the is key class and the IBA score, the Bernoulli NBC was

performing better with a recall of 0.24 and an IBA of 0.23 for the count key information

extraction. The multinomial NBC had a value of 0.00 for both these measures, and the

naive approach had a recall of 0.11 and an IBA of 0.10. The Bernoulli NBC was also

better performing than the multinomial NBC for the date key information extraction with

a recall of 0.11 and an IBA 0.10 while the multinomial NBC and the naive approach had

a value of 0.00 for both these measures.

The corresponding ROC curves and their AUC values are shown in Fig. 4.2. The AUC

for the count extraction was higher (0.72) for the Bernoulli NBC than the multinomial

NBC (0.50). The AUC for the date extraction was 0.83 for the multinomial NBC and 0.48

for the Bernoulli NBC.

Since there were strong expectations which phrases indicated the mentioning of a key

entity such as “. . . confirmed cases. . . ” or “. . . cases . . . as of. . . ”, I retrieved those tokens
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Table 4.3: The performance evaluation of the count key information extraction. For each
classifier and label, the precision (Pre.), recall (Rec.), specificity (Spec.), F1, index balanced
accuracy (IBA) with α = 0.1, and support (Sup.) is given. The recall of the is key class was
the main objective of the classifier, and since the dataset was imbalanced, the IBA was a better
measure for the overall accuracy. Blue values are the best in both category and orange values
the worst.

Pre. Rec. Spec. F1 IBA Sup

Multinomial Naive Bayes

is not key 0.91 1.00 0.00 0.95 0.00 446

is key 0.00 0.00 1.00 0.00 0.00 43

Average/Total 0.83 0.91 0.09 0.87 0.00 489

Bernoulli Naive Bayes

is not key 0.93 0.90 0.24 0.91 0.23 447

is key 0.18 0.24 0.90 0.21 0.20 42

Average/Total 0.86 0.84 0.29 0.85 0.23 489

Table 4.4: The performance evaluation of the date key information extraction. For each classifier
and label, the precision (Pre.), recall (Rec.), specificity (Spec.), F1, index balanced accuracy
(IBA) with α = 0.1, and support (Sup.) is given. The recall of the is key class was the main
objective of the classifier, and since the dataset was imbalanced, the IBA was a better measure
for the overall accuracy. Blue values are the best in both category and orange values the worst.

Pre. Rec. Spec. F1 IBA Sup

Multinomial Naive Bayes

is not key 0.67 1.00 0.00 0.80 0.00 26

is key 0.00 0.00 1.00 0.00 0.00 27

Average/Total 0.44 0.67 0.33 0.53 0.00 39

Bernoulli Naive Bayes

is not key 0.78 0.93 0.11 0.85 0.11 30

is key 0.33 0.11 0.93 0.17 0.10 9

Average/Total 0.68 0.74 0.30 0.69 0.11 39

that were strong indicators for the is key label (Tab. 4.5).

4.2.2 Evaluation

It is interesting that the multinomial NBC was by a large margin better performing in

the date entity selection from sentences than the Bernoulli NBC according to the AUC

(Fig. 4.2). This finding contradicts the former expectation that Bernoulli NBC is typically

preferred in short text classifications. However, the contrary applies to the count entity

recognition where the Bernoulli NBC indeed is better, yet with a smaller difference. When
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Figure 4.2: A ROC-curve comparison of the different key information extraction classifier
trained using a Multinomial naive Bayes (MNB) and Bernoulli naive Bayes (BNB) classifier with
the respective value for the AUC.

Table 4.5: The most important words during the classification of the multinomial NBC to
detect the key entities Counts and Dates.

Entity Class Word Positive (%)

Counts variant 31.1
poultry 27.1
Laibin 27.1

42-year-old 22.2
strains. 19.2

province.Aug 19.2
13For 19.2

Dates worm 6.0
occurring 5.3
Nothern 5.3
emerging 5.3
patients 4.5
South 4.1
deaths 3.9

we regard the recall for the is key class and the average IBA score, then for the date and

count key information extraction, the Bernoulli NBC was the better performing algorithm

(Tab. 4.3 and 4.4). In my opinion, the recall for the relevant class together with the IBA

is critical since only correct classifications will decrease the burden for epidemiologists to

enter key information into a database while the IBA gives a good measure about the overall

performance of the model. The AUC does not seem to resemble this desired property

56



because the multinomial NBC with the poor recall appears to be superior to the Bernoulli

NBC for the date key information extraction according to the AUC. Thus, to maximize

the usability of the key information extraction, I would prefer using the Bernoulli NBC

for date and count extraction. It is noteworthy that both Bernoulli NBCs were better

than the naive approach despite their small training data. For training the count entity

extraction, 2445 labeled sentences (198 is key sentences) were used and for training the

date entity extraction 195 labeled sentences (46 is key sentences). Surely, with more and

better quality data that would result from a structured database, better results can be

expected.

Also, the words most responsible for a positive classification for an important count or

date entity (Tab. 4.5) did not match the expectation for words like confirmed or phrases

like as of. Especially the count classification is based on poor tokenization (13For, strains.,

and province.Aug). The detection of such unique (wrong) tokens in positive examples

indicates a severe overfit of the classifier. The extracted words look more reasonable for

the date classification, and the word patients or death appear to make sense. Both words

could be used in a sentence where the author would also mention the date of the confirmed

case numbers. This result suggests that the data needs to undergo better preprocessing to

avoid false tokenization to achieve better results with less overfit. Note, while Tab. 4.5

displays important features from the multinomial NBC, there is no large difference to be

expected to the features of the Bernoulli NBC. Especially, because the Bernoulli NBC

tends to overfit even more. The overall performance of the date and count key information

extraction, however, is not good enough to be used in production. The disease and country

key information extraction, on the other hand, works already well enough.

4.3 Article Recommendation

For the detection of relevant disease outbreak articles, I used the scraped WHO DONs

and ProMED Mail articles together with the EDB entries, all of the year 2018, to build a

labeled dataset which consists of 155 relevant and 3077 irrelevant texts. Since I intended

to also use word embeddings besides the bag-of-words approach to training a classifier,

I visualized the word embeddings of the training data pretrained on the Wikipedia and

Gigaword Corpus and self-trained embeddings using WHO DON and ProMED articles.

Finally, I compared different classifier trained with the tf-idf transformed bag-of-word

approach and document embeddings balanced with ADASYN.

4.3.1 Results

The pretrained embeddings showed the typical clusters of similar tokens such as digits at

the coordinates (-40, -90), names (-75, 25), adjectives (50, -75), and medical terms at (0,
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25) (Fig. 4.3). The self-trained embeddings appear to cover more medical terms from the

center up to the upper right corner that also seem to be clustering. However, it lacks other

typical clusters (Fig. 4.3). Also, the sizable medical term cluster is not well concentrated.

Since the primary goal of the trained classifier is the recognition of relevant articles,

the recall for the relevant label is essential. Tab. 4.6 shows that the SVM has the highest

score for recall of relevant articles (0.79). Also, the IBA, which takes the class imbalance

into account opposed to the F1 score, is the highest on average for the support vector

classifier (0.47). The CNN is the worst performing classifier for both these measures (0.00

for both). The complement naive Bayes and multinomial naive Bayes classifier performed

equally good (recall of 0.10 and IBA of 0.11).

For comparison, I also plotted the ROC-curves and AUC values of all classifier (Fig.

4.4). The AUC value for the CNN is the highest (0.86) and for both NBC the worst (0.46).

4.3.2 Evaluation

The pretrained word embeddings do not cover the same amount of technical vocabulary

compared to the self-trained embeddings. On the other hand, the pretrained embeddings

have other semantically meaningful clusters like adjectives or names which are missing in

the self-trained embeddings. It is likely that a more extensive corpus of epidemiological

articles would show prominent technical vocabulary cluster and common word clusters at

the same time which then would yield a better foundation for training classifiers.

Against expectations (Tab. 2.1), the multinomial and complement NBC had an

identical performance (Tab. 4.6 and Fig. 4.4) although the complement NBC tackles

problems occurring in imbalanced datasets specifically. Also, the deep learning methods

worked worse concerning the imbalanced class measures and were only excelling regarding

common criteria like the F1 score or the AUC value. It appears that the AUC value,

although commonly used to measure the performance of classifier trained with imbalanced

classes, does not give a good measure for the classification of relevant articles as the IBA

or recall does since the CNN has the highest AUC score but has a recall of 0.00 for relevant

article (Tab. 4.6). A reason for the poor performance of the CNN is that it overfitted.

Overfitting can be avoided with dropout (random removal of nodes in the network during

training time to minimize highly specified nodes), regularization (e.g., L2 to punish strong

weighting of nodes), and early stopping (to minimize the difference of losses between the

test and validation set). I believe that with the aforementioned adjustments, the CNN

could perform better. However, building a well-adjusted model was not in the scope of

this thesis.

For now, the support vector machine is preferred due to its good IBA and recall value

for the relevant class. Although the relevance classification has not a strong performance,

it could already aid epidemiologists. The model could be retrained every time articles are
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Table 4.6: The performance evaluation of the relevance classification. For each classifier and
label, the precision (Pre.), recall (Rec.), specificity (Spec.), F1, index balanced accuracy (IBA)
with α = 0.1, and support (Sup.) is given. The support vector classifier uses the radial basis
function (RBF) as a kernel. Blue values are the best in their category and orange values the
worst.

Pre. Rec. Spec. F1 IBA Sup

Multinomial Naive Bayes

Irrelevant 0.96 0.98 0.10 0.97 0.11 617

Relevant 0.21 0.10 0.98 0.14 0.09 30

Average/Total 0.92 0.94 0.14 0.93 0.11 647

Complement Naive Bayes

Irrelevant 0.96 0.98 0,10 0.97 0.11 617

Relevant 0.21 0.10 0.98 0.14 0.09 30

Average/Total 0.92 0.94 0.14 0.93 0.11 647

Logistic Regression

Irrelevant 0.97 0.67 0.63 0.79 0.42 762

Relevant 0.09 0.63 0.67 0.15 0.42 38

Average/Total 0.93 0.66 0.63 0.76 0.42 800

k-Nearest Neighbor Classifier

Irrelevant 0.97 0.77 0.53 0.86 0.41 762

Relevant 0.10 0.53 0.77 0.17 0.39 38

Average/Total 0.93 0.75 0.54 0.82 0.41 800

Support Vector Machine (RBF)

Irrelevant 0.98 0.60 0.79 0.74 0.46 762

Relevant 0.09 0.79 0.60 0.16 0.48 38

Average/Total 0.94 0.61 0.78 0.72 0.47 800

Multilayer Perceptron

Irrelevant 0.97 0.78 0.58 0.87 0.46 762

Relevant 0.12 0.58 0.78 0.19 0.44 38

Average/Total 0.93 0.77 0.59 0.83 0.46 800

Convolutional Neural Network

Irrelevant 0.95 1.00 0.00 0.98 0.00 762

Relevant 0.00 0.00 1.00 0.00 0.00 38

Average/Total 0.91 0.95 0.05 0.93 0.00 800

entered into the EDB to increase performance continuously. Until then the relevance score

could just be displayed instead of using it to filter content.
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4.4 Web App

Finally, I built a web application named “Aussinator” using Flask and Datatables to

visualize a possible workflow of the keyword extraction and relevance scoring.

The web app allows the user to enter an URL for evaluation. The output of this

evaluation is the extraction of key information of this article and a relevance score (Fig. 4.5).

The app also allows a more automated workflow. The buttons Get ProMED articles or

Get WHO DONs will trigger an automatic evaluation of all articles of the respective domain

since the last review. Instead of building an automated evaluation update, this function

allows the user to observe the functionality of the application better. Furthermore, the

application has its own database that can be downloaded in different formats. That was

an essential step at this time point since INIG was not sure how to proceed to store data.

Aussinator offers easy access to the information extraction and relevance scoring

developed during this thesis. Furthermore, it provides enough freedom to the user during

operation by providing a possibility to validate the output of the app. However, the live

extraction is rather slow. The processing of one URL takes up to two seconds. This

delay is particularly noticeable when extracting several articles as intended by Get ProMED

articles. The preprocessing by EpiTator is the bottleneck. NER often is a slow process,

and EpiTator looks up several entities which causes the delay. A solution to this would be a

daemon process that regularly checks whether the sources of interest published new articles.

If so, it would then start scraping, evaluating, and then store the key information and

relevance score in the background to increase the retrieval speed for the update functions

Get ProMED articles and Get WHO DONs.
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Figure 4.3: A comparison of word embeddings applied to the training data using embeddings
pretrained on the Wikipedia and Gigaword corpus (blue) and on WHO DON and ProMED
articles (red) using t-SNE for dimensionality reduction. The pretrained embeddings show cluster
of digits (-40, -90), names (-75, 25), adjectives (50, -75), and medical terms at (0, 25) encircled
in orange. The self-trained embeddings show a neighborhood of medical terms.
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Figure 4.4: A ROC-curve comparison of the different relevance classifier trained using a
Multinomial naive Bayes (MNB), complement naive Bayes (CNB) classifier, logistic regression
(LR), k-nearest neighbor classifier(kNN), support vector machine (SVM), multilayer perceptron
(MLP) and convolutional neural network (CNN) with the respective value for the AUC. Note,
the curves of the MNB and CNB overlay.
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Figure 4.5: Aussinator, a Flask web application using the keyword extraction and relevance
scoring trained as part of this thesis.
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CHAPTER 5

Conclusion

The main objective was to show that it is feasible to utilize already available resources at

the RKI, in this case, the Incident Database, using novel NLP methodology to improve

epidemiological surveillance. Thereby, the outcome of this thesis also proves that EBS,

even with smaller resources, is possible. By providing a web service and using open source

libraries, I developed an scalable tool. This is of interest for the RKI which shares expertise

with other countries and institutes.

Of course, more work is necessary to bring the Aussinator into production. The

performance of the keyword extraction of the date and the count needs to be improved for

better user experience. However, this point can be tackled as mentioned in the evaluation

of the classifier (4.2.2). This is true for also other goals not met during this thesis such as

the availability of the Aussinator in several languages and the avoidance and the uncovering

of possible human biases in the evaluation of text relevance. It is possible to provide better

classifications that work for different languages using multilingual word embeddings [Chen

and Cardie, 2018], or a better keyword extraction using contextual embeddings [Devlin

et al., 2018; Peters et al., 2018] which adjust the embedding based on the textual context.

Primarily, the poor performing keyword extraction strongly depends on the local properties

of the keywords to be extracted. Which entity is relevant most often depends on the words

nearby and thus contextually adapted embeddings might increase the performance of the

keyword extraction.

Also, tackling biases and personal preferences is essential to continue this project and

make it save to use. It will be essential to show how the decisions of Aussinator are made,

to win the approval of epidemiologists in the proceeding digitization of EBS. Thus, the

relevance score needs to be made explainable by revealing why these decisions were made.

Therefore, it would be desirable to visualize the text fragments on which the relevance

classifier based its decision on, and which would also allow detecting biases in the classifier

[Arras et al., 2017].
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Since Aussinator is a web service, the next step would be to give several people

access to this tool, and leverage the increased usage to train a base neural network for the

classification and then use transfer learning, to adopt the network to individual preferences.

Finally, I only showed that it is possible to automate the keyword extraction and

relevance scoring using the incident database. To, however, achieve production-ready

results, it would be necessary to apply a separate study to select and finetune classification

algorithms to reach better performances.
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