
Universität Osnabrück

Fachbereich Humanwissenschaften

Institute of Cognitive Science

Masterthesis

Systematic Evaluation and Optimization of
Outbreak-Detection Algorithms Based on Labeled

Epidemiological Surveillance Data

Rüdiger Busche

968684

Master’s Program Cognitive Science

November 2018 - April 2019

First supervisor: Dr. Stéphane Ghozzi

Robert Koch Institute

Berlin

Second supervisor: Prof. Dr. Gordon Pipa

Institute of Cognitive Science

Osnabrück

Declaration of Authorship

I hereby certify that the work presented here is, to the best of my knowledge and

belief, original and the result of my own investigations, except as acknowledged, and

has not been submitted, either in part or whole, for a degree at this or any other

university.

city, date signature

Abstract

Indicator-based surveillance is a cornerstone of Epidemic Intelligence, which has

the objective of detecting disease outbreaks early to prevent the further spread of

diseases. As the major institution for public health in Germany, the Robert Koch

Institute continuously collects confirmed cases of notifiable diseases from all over

the country. Each week the numbers of confirmed cases are evaluated for statistical

irregularities. Theses irregularities are referred to as signals. They are reviewed

by epidemiologists at the Robert Koch Institute and state level health institutions,

and, if found relevant, communicated to local health agencies. While certain algo-

rithms have been established for this task, they have usually only been tested on

simulated data and are used with a set of default hyperparameters. In this work,

we develop a framework to systematically evaluate outbreak detection algorithms

on labeled data. These labels are manual annotations of individual cases by ex-

perts, such as records of outbreak investigations. For this purpose we use a custom

score to summarize the quality of algorithms in a single number. We optimize the

joint hyperparameter space of all algorithms using a combination of Bayesian and

multi-armed bandit strategies. We find that generalizable improvements of outbreak

detection performance can be obtained using hyperparameter optimization. How-

ever, the performance on real data of all tested algorithms is rather weak compared

to what would be expected from simulation studies. This indicates that outbreak

detection on real data is a hard problem and that there is room for improvement by

designing new outbreak detection algorithms. With the establishment of an evalua-

tion framework we enable a fair comparison of outbreak detection algorithms on real

world data. This also opens up the door to comparing classical outbreak detection

methods with machine learning-based and anomaly detection methods from other

fields.

Contents

1 Introduction 1

1.1 Motivation and Objective . 1

1.2 The Surveillance System at the RKI 3

1.3 Formalizing the Outbreak Detection Problem 5

2 Methods 9

2.1 Outbreak Detection Algorithms . 9

2.1.1 Window-based Approaches 9

2.1.2 GLM-based Approaches . 10

2.1.3 Cusum-based Approaches . 10

2.2 Hyperparameter Optimization . 11

2.3 Implementation . 14

2.4 IT Infrastructure at the RKI . 15

2.5 Scoring . 16

3 Results and Discussion 19

3.1 Exploratory Analysis . 19

3.1.1 Reporting Delay . 19

3.1.2 Labeling Delay . 20

3.1.3 Outbreak spread . 21

3.1.4 Timing of Case Reportings 24

3.2 Construction of the dataset . 26

3.3 Optimization . 26

3.4 Performance . 31

3.5 Interpretation of Optimized Hyperparameters 39

3.6 Comparison to Baselines . 43

3.7 Optimization and Interpretation of Different Optimization Criteria . 44

4 Conclusion 48

5 Bibliography 52

List of Figures

1.1 Schematic description of the German reporting system. 4

1.2 Screenshot of the dynamic signal report send weekly to epidemiologist

at the RKI and state public health agencies. 5

3.1 Counts of reporting delay for Salmonella. 20

3.2 Histogram of labeling delay in weeks for Salmonella. 21

3.3 Number of outbreaks that spread across the respective number of

counties for Salmonella. 22

3.4 Number of cases per pathogen for Salmonella. 23

3.5 Number of outbreaks caused by different numbers of pathogens sub-

types for Salmonella. 24

3.6 Distribution of weekdays of reporting since 2001. 25

3.7 Distribution of weekdays of reporting since 2015. 25

3.8 Correlations across different budgets for a BOHB run with the Far-

ringtonFlexible algorithm on Salmonella. 27

3.9 Losses over time for a BOHB run with the FarringtonFlexible algo-

rithm on Salmonella. 28

3.10 Losses for random configurations and model based configurations

across different budgets for a BOHB run with the FarringtonFlexi-

ble algorithm on Salmonella. 28

3.11 Scores of the top-10% optimized configurations evaluated on full bud-

get for FarringtonFlexible on Salmonella compared to the default

configuration. 32

3.12 Scores of the top-10% optimized configurations evaluated on full bud-

get for FarringtonFlexible on Campylobacter compared to the default

configuration. 33

3.13 Ranking of algorithms for Salmonella based on the training set. . . . 34

3.14 Ranking of algorithms for Campylobacter based on the training set. . 34

3.15 Kernel density estimate of distribution of different metrics on training

and test set for top-10% configurations on the training set for Farring-

tonFlexible on Salmonella. The optimization criterion is highlighted. 35

3.16 Kernel density estimate of distribution of different metrics on train-

ing and test set for top-10% configurations on the training set for

FarringtonFlexible on Campylobacter. The optimization criterion is

highlighted. 36

3.17 Improvement of the best configuration over the default configuration

for Salmonella. 37

3.18 Improvement of the best configuration over the default configuration

for Campylobacter. 37

3.19 Comparison of the score distribution for the best configuration and

the default configuration on Salmonella. 38

3.20 Comparison of the score distribution for the best configuration and

the default configuration on Campylobacter. 39

3.21 Parameter distributions of the top-10% EarsC1 configurations on

Salmonella. 40

3.22 Parameter distributions for the top-10% Farrington configurations on

Salmonella that differ from the default configuration. 41

3.23 Parameter distributions for the top-10% Farrington configurations on

Salmonella that are similar to the default configuration. 42

3.24 tSNE embedding of parameter distributions of the top-10% Farring-

ton configurations on Salmonella. 43

3.25 Development of different metrics across the course of optimization for

optimizing the “ghozzi score” score for FarringtonFlexible on Salmonella. 44

3.26 Correlation matrix between metrics for FarringtonFlexible on Salmonella. 45

3.27 Development of different metrics across the course of optimization for

optimizing the F1 score. 46

3.28 Development of different metrics across the course of optimization for

optimizing the case weighted F1 score. 46

List of Tables

2.1 List of evaluated outbreak detection algorithms. 11

3.1 Configuration spaces for hyperparameter optimization. 29

3.2 Configuration spaces for hyperparameter optimization (continued). . 30

List of Algorithms

1 Pseudo-code for generic model-based hyperparameter optimization. . 12

2 Pseudo-code for Hyperband. 13

1 Introduction

1.1 Motivation and Objective

Disease outbreaks pose a major risk to public health. Through timely detection

and appropriate reaction their consequences can be mitigated. The processes of

collecting and evaluating information relevant to public health risks as well as the

mechanisms for reacting to them are summarized by the World Health Organization

(WHO) in the Early Warning and Response framework [1] (EWAR). The WHO

defines EWAR as

the organized mechanism to detect as early as possible any abnormal

occurrence or any divergence from the usual or normally observed fre-

quency of phenomena.

The ability to detect public health risks early is included in definitions of surveil-

lance and Epidemic Intelligence (EI).

The WHO defines surveillance in the International Health Regulations [2] as

the systematic on-going collection, collation and analysis of data for pub-

lic health purposes and the timely dissemination of public health infor-

mation for assessment and public health response as necessary.

and Epidemic Intelligence as

the systematic collection, analysis and communication of any information

to detect, verify, assess and investigate events and health risks with an

early warning objective. [1]

These two rather synonymous definitions are further subdivided into Event-Based

Surveillance and Indicator-Based Surveillance (IBS). Event-Based Surveillance is

concerned with unstructured data obtained from heterogenous sources at varying fre-

quencies. In contrast Indicator-Based Surveillance deals with structured data from

reliable sources. Often the data collection process in Indicator-Based Surveillance

1

is performed by the same organization that is responsible for the surveillance [1].

Indicator-Based Surveillance is specifically defined as

the systematic (regular) collection, monitoring, analysis and interpre-

tation of structured data, i.e. of indicators produced by a number of

well-identified, mostly health-based, formal sources. [1]

A surveillance system in operation will generate signals. A signal again is defined

as

data and/or information considered by the Early Warning and Response

system as representing a potential acute risk to human health. Signals

may consist of reports of cases or deaths (individual or aggregated), po-

tential exposure of human beings to biological, chemical or radiological

and nuclear hazards, or occurrence of natural or man-made disasters.

Signals can be detected through any potential source (health or non-

health, informal or official) including the media. Raw data and infor-

mation (i.e., untreated and unverified) are first detected and triaged in

order to retain only the one pertinent to early detection purposes i.e.

the signals. Once identified signals must be verified. When it has been

verified, a signal becomes an “event”.

In this work we focus on IBS based on confirmed case counts. This is the most

conservative form of IBS as it only includes information of high confidence, i. e. cases

that conform to reference definitions and are often corroborated by laboratory in-

vestigation. Moreover, it is the main form of surveillance currently employed at a

national scale for a wide range of infectious diseases by the Robert Koch Institute

(RKI), as regulated by the 2001 Infection Protection Act [3, 4].

The objective of this work is to empirically evaluate the quality of outbreak de-

tection algorithms in the setting of the surveillance system of mandatory notifiable

diseases at the RKI.

While many studies [5–8] have compared the performance of standard outbreak

detection methods they usually exhibit the following limitations

• The data sets used for evaluation is either completely simulated or the outbreak

labels are created algorithmically.

• In most studies, reporting delay is not incorporated in the data. Instead data

is treated as if all data would be known in the moment outbreak detection is

applied.

2

• The studies collect different metrics, such as sensitivity and specificity, and

interpret them, but do not provide a definite ranking of algorithms.

• Default hyperparameters are used or only a very coarse grid search is con-

ducted, leaving room for unseen performance in unexplored hyperparameter

space.

We try to overcome these limitations with the following approaches:

• By comparing the signals generated by common outbreak detection algorithms

on data from the RKI’s surveillance system with expert labeled outbreaks, we

assess how well the current system actually performed in the past and how

well other algorithms would have performed in place of it.

• By applying the outbreak detection only to the data available at the point in

time when the outbreak had to be detected, we obtain a more realistic estimate

of algorithm performance.

• By defining a custom scoring rule we summarize algorithm performance in a

single number.

• Through hyperparameter optimization we ensure a fair comparison between

algorithms and investigate if hyperparameter optimization achieves generaliz-

able improvements in the outbreak detection setting.

By evaluating the signal detection aspect of the RKI’s surveillance system we

contribute to complying with WHO guidelines for communicable disease surveillance

and response systems [9], which demand that surveillance systems are evaluated for

achievement of surveillance objectives and possible improvements periodically.

1.2 The Surveillance System at the RKI

The Surveillance System at the RKI [10] collects confirmed cases of 88 notifiable

diseases, including information about the patient (age, sex, etc.) and the infection

(place, time, pathogen subgroup, etc.).

When a patient goes to see a physician and a notifiable disease is diagnosed, a

report is sent to the local public health agency. Simultaneously, a probe is given

to a laboratory. The laboratory could be part of the physician’s practice or an

independent institution. If the laboratory can corroborate the diagnosis, it also

3

reports to the local public health agency. Only when the local agency has the

confirmation from both the physician and the laboratory, it calls the reported case a

confirmed case and reports it to the state public health agency. State agencies pass

the information on to the RKI without further interference. Figure 1.1 summarizes

the reporting pathway. While this reporting pathway ensures that only actual cases

are reported as confirmed cases, it leads to a significant delay between first diagnosis

and having the data available at the RKI

forwards

state public heath agency

forwards

local public health agency

Robert Koch Institute

requests examination

reports

physician

confirms report

laboratory

Figure 1.1: Schematic description of the German reporting system. Reproduced
from Salmon [11].

At the RKI, time series data are created through weekly aggregation of case counts

according to some combination of attributes, so called filter combinations. Therefore

the same case could be included in several time series. For example, the case of a

woman infected with Salmonella in Munich, would be included in female Salmonella

cases in Munich, Salmonella cases in Munich and Salmonella cases in Bavaria.

4

The FarringtonFlexible algorithm [12] is used to look for signals in each of those

time series. The detected signals are stored in a separate database and presented to

epidemiologist at the RKI as well as local health agencies in the form of a dynamic

report [13], (Figure 1.2). In this application, users can decide to only look at signals

at more general levels of filter combinations, e.g. whole Bavaria, or at more specific

levels, e.g. women in Munich [10].

Figure 1.2: Screenshot of the dynamic signal report send weekly to epidemiologist
at the RKI and state public health agencies.

1.3 Formalizing the Outbreak Detection Problem

In this section we explore different ways of formalization the problem of outbreak

detection. Even though the term outbreak is used routinely, no commonly accepted

precise definitions exists. The WHO gives the following definition [14]:

Definition 1.1. Outbreak according to WHO A disease outbreak is the occurrence

of disease cases in excess of normal expectancy. The number of cases varies according

to the disease-causing agent, and the size and type of previous and existing exposure

to the agent.

While such a definition is very general, it is also very imprecise, because it does

not address the question what defines “normal expectancy”. This opens the gates

5

for many possible quantitative outbreak definitions, leading to a multitude of incon-

sistent definitions [15].

What seems closer to epidemiological practice is to assign cases to an outbreak

if they share a common origin. An example of this can be found in the outbreak

definitions for Norovirus of the Australian Department of Health [16].

Definition 1.2. Epidemiological outbreak Two or more cases of common etiology.

As Brady et al. [15] note, an outbreak in epidemiological terms does not necessarily

constitute a situation that is a threat to public health. Therefore, only outbreaks

that exceed the normal control capacities in operation should be considered for

triggering additional public health responses. A definition for outbreaks relevant to

surveillance could therefore be:

Definition 1.3. Surveillance relevant outbreak A situation in which the high risk

of acquiring a disease is present in the population such that it warrants intervention

by a public health institution.

Even though the epidemiological and the surveillance relevant definition might

often overlap, it is possible that only the epidemiological definition is met. For ex-

ample, it might be possible to trace several cases to the same source, but these cases

do not have any risk of transmitting the disease further. For example, a couple living

in social isolation far out in the mountains, where one partner infects the other. In

this case the epidemiological definition would be met, but the surveillance defini-

tion would not be met. In our understanding, the surveillance definition subsumes

the epidemiological definition, such that a surveillance relevant outbreak always has

an epidemiological origin. We emphasize that while the epidemiological definition

might be more precise, the surveillance definition provides a working definition for

the practitioner.

Irrespective of the exact definition an outbreak is always characterized by at least

two cases that are assigned to the same outbreak label. In our case this labeling is

provided by experts as part of the surveillance system at the RKI system. In the

following we give a mathematical formalization of the problem.

Let C = {(xi, τi, yi)}Ni=1 be the set of cases. Each case ci consist of a feature vector

xi ∈ X that contains the disease, information about the patient such as age, sex

and location, a real timepoint τi ∈ T which is the time of infection and an outbreak

label yi with

6

yi =

0 if ci is not element of an outbreak

j ∈ N if ci belongs to outbreak j

A general formulation for outbreak detection is to map unlabeled cases onto their

outbreak labels

f : X × T→ N0 (1.1)

This resembles the classical cluster problem formulation with a variable number

of cluster centers as in DBSCAN [17].

Even though this case based formulation seems natural given the nature of dis-

eases, they are not employed in the world of surveillance algorithms and also go

beyond the scope of this work. While human experts actually label individual cases

as belonging to individual outbreaks, surveillance algorithms usually work on regu-

lar spaced aggregated time series of case counts. Let x = (x1, . . . xT) be such a time

series with entries at regularly spaced, discrete timepoints t. An entry xt of that

time series is defined as

xt =
∣∣{ci | t ≤ τi < t+ 1}Ni=1

∣∣ (1.2)

with t+ 1 denoting the next time point in the time series.

Based on this transformation we can view the problem as a sequential supervised

learning problem [18], in which the sequence of counts is paired with a sequence of

outbreak labels (x,y), with x = (x1, . . . , xT), xi ∈ N0 and yi ∈ B. For each timepoint

t a boolean label is assigned, corresponding to whether there were outbreak cases

present in the aggregation time interval. We will label this problem time point

classification problem. This is the standard formulation of common surveillance

algorithms. Alternatively, the number of outbreak cases in the aggregation time

interval could be used as labels, in which case we would call it a time point regression

problem.

The time point formulation can be extended into a time series formulation by

dividing the time series x into smaller time series and assigning the label of the last

time point to the whole time series. Thus a data set {(xj , yj)}Tj=1 is obtained. This

formulation is especially useful for incorporating reporting delay. That means that

7

the information at time point t = j can be quite different depending on whether j is

relatively recent, e. g. j = T or already some time in the past. This is due to the fact

that information arrives sometimes slowly in epidemiological surveillance systems.

We will call this problem formulation a time series classification problem. It is the

main problem formulation used in this work.

8

2 Methods

2.1 Outbreak Detection Algorithms

In this section we review the outbreak detection techniques evaluated in this work.

Our aim is to sort the different approaches into general categories. For a more

detailed description of the exact statistical methodologies we refer to Unkel et al.

[19] and Salmon et al. [20].

What all algorithms have in common is that they can be viewed as semi-supervised

techniques from a machine learning or anomaly detection perspective [21]. All algo-

rithms fit historic data, assuming that they represent the normal state of the system.

Having fitted the data, an estimate for the case counts of the current week is com-

puted. This estimate is compared to the number of cases reported in the current

week. If the observed case count exceeds the expected number by some threshold,

an alarm is raised. Most algorithms in fact compute a predictive distribution for the

estimated number of case counts and raise an alarm if the actual number exceeds a

certain quantile of this distribution.

We choose to evaluated all algorithms available in the R surveillance package [20]

that yielded themselves to the problem formulation defined in Section 1.3 and did

not have prohibitively large run-times that would make the application of hyperpa-

rameter optimization difficult. All outbreak detection algorithms evaluated in this

work are summarized in Table 2.1.

Moreover, all algorithms evaluated in this work focus on univariate time series of

counts. While extensions for multivariate time series and incorporation of spatial

data exist [19], they are not considered in this work.

2.1.1 Window-based Approaches

The simplest form of outbreak detection algorithms are window-based approaches.

For them the expectation for the current week is computed from a moving window of

fixed size. For example the EarsC1 algorithm, computes its predictive distribution

9

based the mean and standard deviation of the last seven timepoints, using a normal

distribution.

Because of the short time interval considered, these approaches are naturally in-

sensitive against seasonality and trend. However, recent outbreaks can contaminate

the data, reducing the sensitivity of the algorithms.

This category includes the Ears-family [22], CDC [23] and the RKI [20] algorithm.

2.1.2 GLM-based Approaches

Approaches based on Generalized Linear Models (GLMs) form a popular group

of outbreak detection algorithms. They compute a predictive distribution for the

current week based on fitting a GLM to previous data. An alarm is raised if the

current observation is unlikely under the predictive distribution controlled by some

α value. Often Poisson or Negative Binomial models are used to do justice to the

count nature of the data. Moreover, terms to accommodate seasonality and trend are

often incorporated as well. GLM-based approaches included the classical Farrington

algorithm [24] and its more recent extension [12].

2.1.3 Cusum-based Approaches

Both window-based and GLM approaches have the downside that they only incor-

porate evidence from the current week. Larger outbreaks that build up slowly could

therefore easily be missed. Cusum-based approaches are inspired by models from

statistical process control [25] and incorporate evidence from previous timepoints.

Instead of computing a predictive distribution, evidence that observed case counts

do originate from an epidemic is accumulated until a certain threshold is exceeded

and an alarm is raised. Then the sum is reset.

Cusum-based approaches include the Cusum [26], generalized likelihood ratio

methods based on Poisson [27] or negative binomial distributions [28] and the Out-

breakP method [29].

10

Table 2.1: List of evaluated outbreak detection algorithms.

algorithm category reference

EarsC1 window-based Hutwagner et al. [22]
EarsC2 window-based Hutwagner et al. [22]
CDC window-based Stroup et al. [23]
RKI window-based Salmon et al. [20]
Farrington GLM-based Farrington et al. [24]
FarringtonFlexible GLM-based Noufaily et al. [12]
Cusum Cusum-based Rossi et al. [26]
GLRPoisson Cusum-based Höhle [27]
GLRNegativeBinomial Cusum-based Höhle & Paul [28]
OutbreakP Cusum-based Frisén et al. [29]
Bayes other Höhle [30]

2.2 Hyperparameter Optimization

Hyperparameter optimization is the field of algorithmically optimizing parameters

that are usually fixed before the training of a model [31]. We employ a state-of-

the-art approach called BOHB [32], to optimize the joint hyperparameter space of

each algorithms. BOHB combines two approaches to hyperparameter optimization:

Bayesian Optimization and Hyperband.

Machine learning algorithms are parameterized by a set of hyperparameters x ∈ X
before learning. The set of possible hyperparameters X can be characterized as a

tree-structured generative process involving both discrete and continuous spaces.

For example, a categorical variable might be the procedure to fit a time trend.

Depending on the procedure other continuous parameters that influence the trend

fitting process are added. The loss defined for the task at hand induces an evaluation

function f : X → R+ that maps a hyperparameter configuration to the validation

loss attained after training. The goal of hyperparameter optimization is to find a

configuration x∗ that minimizes f , i. e. x∗ = argminx∈X f(x).

As the evaluation of f involves training of the model, it is too expensive to be

performed exhaustively over large hyperparameter spaces. The idea of model-based

hyperparameter optimization is to instead model f based on observed pairs of hyper-

parameters x and the loss l achieved with these hyperparameters D = {xi, li}Ni=1.

This way hyperparameter optimization can be formulated as another learning prob-

lem. In each iteration a model M is fitted to the data and subsequently used to

11

sample new promising hyperparameter configuration (cf. Algorithm 1).

Algorithm 1: Pseudo-code for generic model-based hyperparameter opti-

mization. Adapted from Bergstra et al. [31].

Data: configuration space X , evaluation function f , model M , initial model

M0

Result: best configuration x∗

D ← ∅;
for t← 1 to T do

sample promising configuration x∗ from model Mt−1;

lt ← f(x∗); // evaluate objective function

D ← D ∪ (x∗, lt); // add new data point to dataset

Mt ←M(D); // refit model to new dataset

end

The idea behind Bayesian optimization is to model the probability density p(f |D).

Based on this, an acquisition function a is constructed, that is maximized to find

new promising configurations. Expected improvement is a common choice for the

acquisition function. Let l∗ denote the lowest validation loss observed so far.

a(x) =

∫
max(0, l∗ − f(x))dp(f |D) (2.1)

Tree-structured Parzen Estimators (TPE) [31] exploit this choice by directly opti-

mizing expected improvement instead of modeling p(f |D). TPEs use kernel density

estimators to model the two distributions

lTPE(x) = p(f(x < l∗|x, D)) (2.2)

gTPE(x) = p(f(x > l∗|x, D)) (2.3)

Then the next configuration is selected as x∗ = argmaxx∈X
lTPE(x)
gTPE(x) . As Bergstra

et al. [31] proved this is equivalent to optimizing expected improvement.

Hyperband [33, 34] on the other hand is an extension of random search. To

speed up the process of finding good configurations, it evaluates configurations at

first on a smaller budget, replacing the evaluation function with a budgeted version

f̃ : X × N → R+. The budget can be the number of training epochs, or a smaller

proportion of the dataset. The idea behind this is that performance on smaller tasks

12

is indicative of the performance on the entire tasks. A large number of random

configurations is thus evaluated on a small budget. Only the best k configurations

will be advanced to the next round, where they are evaluated on a bigger budget.

This procedure called SuccessiveHalving is performed until the maximum budget

is reached (cf. Algorithm 2).

Algorithm 2: Pseudo-code for Hyperband. Adapted from Falkner et al. [32].

Data: minimum budget bmin, maximum budget bmax, budget progression

parameter η, number of iterations i

Result: best configuration x∗

smax ←
⌊
logη

bmax
bmin

⌋
;

while i > 0 do

for s ∈ {smax, smax − 1, . . . , 0} do

sample n = d smax+1
s+1 · ηse candidate configurations C;

// start SuccessiveHalfing subroutine

b← ηs · bmax;

while b ≤ bmax do

L← {f(c, b) | c ∈ C}; // evaluate losses on budget b

k ←
⌊
|C|
η

⌋
;

C ← top(C,L, k); // only keep the k best configurations

b← η · b; // increase budget

end

i← i− 1;

end

end

BOHB unites these two approaches by replacing the random sampling in Hyper-

band with a TPE model. Starting with random sampling, a TPE model is build

once enough configurations are available to learn from. To keep diversity in the

sampled configurations BOHB still uses a fraction of random configuration in each

iteration even after the TPE model is available.

13

2.3 Implementation

Python

Most code for this work was written in Python 1. Python is an interpreted, dynam-

ically typed language originally created by Guido van Rossum and developed by

an open source community. Key features of Python are its flexibility, its simplistic

syntax and its interoperability with C. While Python is strictly object-oriented in its

implementation and has wide support for object-oriented programming paradigms, it

also allows for procedural or functional programming styles. Python was an excellent

choice for this work, as it offers many mature packages for machine learning, hy-

perparameter optimization and experiment tracking (cf. the following subsections).

Moreover, it allows for cleanly engineered software while being fast for prototyping.

For this work, Python was used in version 3.7.

R surveillance package

Reference implementations for all discussed outbreak detection algorithms are taken

from the R surveillance package [30].

epysurv

To be able to use the outbreak detection algorithms from the R surveillance pack-

age in Python, we wrote a wrapper for the library called epysurv. It provides

a scikit-learn-like interface [35] to all outbreak detection algorithms. As all

scikit-learn estimators, the algorithms provide a fit and a predict method.

The fit method has to be provided with a regularly time-indexed DataFrame [36]

that contains the case and outbreak case counts for each time point. When calling

predict, a time-indexed DataFrame has to be provided containing only the case

counts. For each time point in the DataFrame a prediction is made. The time points

provided to predict should lie strictly in the future of the time points provided to

fit. This interface was inspired by the prophet library [37]. For each algorithm, an

interface based on single arrays for the time point problem formulation and genera-

tor based interfaced for the time series problem formulation is provided (cf. Section

1.3). The generators provided have to yield a DataFrame-label pair at each itera-

tion. Using generators allows to utilize the time series problem in a memory efficient

manner. In addition to the outbreak detection algorithms, epysurv provides some

1https://www.python.org/

14

https://www.python.org/

utilities for data handling, plotting, and simulation. As part of this work, epysurv

was released as an open source package2 and can be installed via conda3.

Sacred

Sacred [38] is an experiment tracker that is designed to make machine learning

experiments transparent and reproducible. We used it to keep track of different runs,

i. e. hyperparameter optimizations and the performance of single hyperparameter

configurations.

Using Sacred we could easily store metrics associated with different hyperparam-

eter configurations and subsequently analyze them. As Sacred stores source code

alongside parameter configurations, we ensure reproducibility of our experiments.

Additionally, we created a package called incense4 to easily query and display

the logged results from Sacred. incense was open sourced as part of this work.

HpBandSter

To make use of the BOHB algorithm, we used the HpBandSter package, in which

BOHB was originally implemented. In addition to the implementation of BOHB,

HpBandSter allows for the distributed execution of the hyperparameter optimization

across different cores or even computing clusters.

2.4 IT Infrastructure at the RKI

The RKI has a rather conservative IT-infrastructure, which uses Windows 7 for

developer machines. We choose to develope the software on a private Linux machine

instead and only work with synthetic data during the development process. This

made it possible to easily open source epysurv, because it was not entangled with

sensitive data. Data was prepared on the Windows machine and transferred to the

RKI’s computing cluster. The code was transferred to the computing cluster using

a remotely hosted git repository. Computation was performed on the computing

cluster and results were recorded using a MongoDB instance running locally on the

computing cluster using Sacred. The directory were the MongoDB stored its data

was then mounted via the network on the Windows machine and analyzed there.

2https://github.com/JarnoRFB/epysurv
3https://docs.conda.io/en/latest/
4https://github.com/JarnoRFB/incense

15

https://github.com/JarnoRFB/epysurv
https://docs.conda.io/en/latest/
https://github.com/JarnoRFB/incense

Thus sensitive data never left the RKI system, while software development could be

performed in a developer friendlier environment.

2.5 Scoring

Outbreak detection is different from standard binary classification. It is character-

ized by high class imbalance. Moreover, each classification decision is associated with

a case count and timeliness information. It might be more important to recognize

large outbreaks and it might be of more value to recognize them early.

To meet these special requirements we designed a custom score that incorporates

the case count. It is defined as follows:

Let x be an epidemiological time series consisting of endemic cases b (background)

and epidemic cases o (outbreak). Particularly, at any point in time t the number of

cases is the sum of endemic and epidemic cases

xt = bt + ot

In the score we weight true positives and false negatives by the number of out-

breaks cases at the particular timepoint. This is motivated by the fact that this

number of cases is either identified or missed as belonging to an outbreak. False

positive predictions are punished by the mean number of outbreak cases in an out-

break week. This is based on the assumption that a falsely raised alarm would cause

on average that much preventive action in the local health agency. True negatives

are not considered, with the idea to not reward specificity to strongly.

Let a be the boolean time series of alarms raised by an outbreak detection model.

Then we define the score s associated with alarms and actual outbreaks as

s(o,a) =

∑
t 1(ot = at ∧ at = 1) · ot − 1(ot 6= at ∧ at = 0) · ot − 1(ot 6= at ∧ at = 1) · ō∑

t ot
(2.4)

This score has some desireable properties, which can be illustrated using some

simple models. Let m∗ be the model that predicts all outbreaks correctly and never

raises a false alarm, i. e. 1(ot > 1) = at ∀ t. We write s(m) to denote the score that

a model achieves, if the score can be calculated independently of actual data. It

follows that m∗ achieves the best possible score of 1.

16

s(m∗) =

∑
t 1(ot = at ∧ at = 1) · ot∑

t ot
(2.5)

= 1 (2.6)

(2.7)

A model m0 that will never predict an outbreak (at = 0 ∀t) on the other hand

will only achieve a score of −1.

s(m0) =

∑
t−1(ot 6= at ∧ at = 0) · ot∑

t ot
(2.8)

=

∑
t−ot∑
t ot

(2.9)

= −1 (2.10)

(2.11)

A model m∞ that always predicts an outbreak (at = 1 ∀t) will be assigned a score

that depends on the ratio of outbreak and non-outbreak weeks. Let T be the total

number of timepoints in the time series. Let k be the number of outbreak timepoints

in the time series (k =
∑

t 1(ot > 0)).

s(m∞) =

∑
t 1(ot = at ∧ at = 1) · ot − 1(ot 6= at ∧ at = 1) · ō∑

t ot
(2.12)

=

∑
t 1(ot = at ∧ at = 1) · ot∑

t ot
−
∑

t 1(ot 6= at ∧ at = 1) · ō∑
t ot

(2.13)

=

∑
t ot∑
t ot
− (T − k) · ō∑

t ot
(2.14)

=

∑
t ot∑
t ot
−

(T − k) · 1k
∑

t ot∑
t ot

(2.15)

= 1− T − k
k

(2.16)

= 2− T

k
(2.17)

(2.18)

17

A downside of this score is that it is undefined for time series without any outbreak

cases, because of the normalization by the sum of all outbreak cases.

Another desireable property of the score would be to incorporate the timeliness

of detected outbreaks. A tentative idea is to add the future cases of an outbreak to

the score once an outbreak is detected. The implementation of adding a timeliness

term to the score is left to future work.

18

3 Results and Discussion

3.1 Exploratory Analysis

Before the algorithms were optimized, several decisions had to be made regarding

the structure of the dataset. In this section we describe the outcomes of analyses

that informed the final structure of the dataset used in the optimization. The data

that were analyzed are the case records for Salmonella and Campylobacter. We only

show the results for Salmonella from the beginning of case recordings in 2001 up to

early 2019 in detail. The results for Campylobacter are very comparable.

3.1.1 Reporting Delay

Because of the reporting pathway that a case needs to go through before it enters

the case database (cf. Section 1.2), some time passes between a patient showing up

at the doctor and the case record entering the database. This time lag is termed

reporting delay. When aggregating individual cases into count time series, it is

worth considering which variable to base the aggregation on and how to take the

reporting delay into account. Two variables in the case data can be considered for

this: ReportingDate and OnsetOfDisease. While ReportingDate marks the date

at which the case was first entered into the database, OnsetOfDisease tries to give

an estimate of when the patient initially got sick, i. e. before they visited the doctor.

It seems more natural to use OnsetOfDisease, as outbreaks would be expected to

appear when many people catch a disease. However, it turns out that 17% of cases

are missing a value for the OnsetOfDisease variable. Moreover, a large proportion

of cases is reported more than a week later than the onset of the disease (Figure 3.1).

For this investigation, in which we only evaluate predictions for the current week,

this would be very inconvenient as a large proportion of the data would have to be

discarded when used for the task of prospective outbreak detection. We therefore

decided to treat all cases as they occurred on the reporting date and not further

consider the OnsetOfDisease variable. This also coincides with the current practice

of the surveillance system operated at the RKI.

19

invalid one two more than two
delay from onset of disease to reporting in weeks

0

50000

100000

150000

200000

250000

co
un

t

Figure 3.1: Counts of reporting delay for Salmonella. The label “invalid” corre-
sponds to data points where the alleged onset of disease lies beyond the
reporting date.

3.1.2 Labeling Delay

When aggregating case records into weekly count time series, a week is considered

an outbreak week if it contains at least a single case that is part of an outbreak (cf.

Section 1.3). Using semi-supervised outbreak detection algorithms can only make

sense if this labeling is provided later than the original case records. If all outbreaks

were known in the moment the cases are reported, their would indeed be no need for

automatic outbreak detection. We therefore assessed the delay between the reporting

of cases and their first time being labeled as belonging to an outbreak. In fact 42%

of all outbreak cases are already known as outbreaks in the week they are reported

and for 37% of all outbreaks at least one case is known to belong to the outbreak in

the week the outbreaks starts (Figure 3.2). However, as the majority of outbreaks

is unknown in the week they occur, it still makes sense to predict outbreaks. Now it

would heavily distort the labeling if the outbreaks known in the current week would

be discarded. Additionally, none of the established outbreak detection methods

evaluated in this work is able to utilize the information about outbreaks directly.

We therefore disregarded the fact that many outbreaks are known in the current

20

week. We leave the consideration about how to utilize this available information for

future work.

0 200 400 600 800
labeling delay in weeks

0

10000

20000

30000

40000

50000

60000

70000
co

un
t

Figure 3.2: Histogram of labeling delay in weeks for Salmonella.

3.1.3 Outbreak spread

As described in Section 1.2 there are many possible filter combinations that can be

used to aggregate case records into count time series. To minimize the computational

load and the problem of multiple testing, we evaluated the spread of outbreaks over

different filter values. One of the most important filters is the geographical location.

The smallest spatial resolution of a case is a county. In the current system data is

aggregated over single counties, several combinations of neighboring counties and

the state level. We found that applying our labeling scheme to state level data

makes relatively little sense. As any small outbreak causes a week to be labeled as

an outbreak week, a large proportion of weeks ends up being called an outbreak. We

therefore decided not to incorporate state level aggregation. Next we investigated

how likely it is that outbreaks spread across multiple counties. We found that 95%

of all outbreaks are restricted to a single county (Figure 3.3).

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 23 24 25 26 27 28 32 33 36 42 73 19
2

counties affected by outbreak

0

5000

10000

15000

20000

ou
tb

re
ak

s

Figure 3.3: Number of outbreaks that spread across the respective number of coun-
ties for Salmonella.

We therefore decided to only aggregate by single counties, as this avoids evaluating

the same data twice, while keeping all information that should be enough to detect

the vast majority of all outbreaks.

Another filter variable is the pathogen subtype. Each disease recorded in the

database can be caused by different subtypes of a pathogen. These subtypes are

organized in a hierarchical fashion. We found that the majority of cases are caused

by very few subtypes (Figure 3.4).

22

2002 2004 2006 2008 2010 2012 2014 2016 2018
reporting date

0

500

1000

1500

2000

2500

3000

ca

se
s

Figure 3.4: Number of cases per pathogen for Salmonella. Each colored area repre-
sent a different pathogen subtype.

As is the case for geographical information, in the surveillance system of the

RKI, different levels of subtypes are considered for outbreak detection. Again, we

evaluated how many distinct subtypes usually participate in an outbreak. We found

that 96% of all outbreaks are caused by a single pathogen subtype (Figure 3.5).

23

0 1 2 3 4 7 9 10
pathogens participating in outbreak

0

5000

10000

15000

20000

ou
tb

re
ak

s

Figure 3.5: Number of outbreaks caused by different numbers of pathogens subtypes
for Salmonella.

We therefore decided to only aggregate by single pathogen subtypes, for the same

reasons as for aggregating only by single counties.

3.1.4 Timing of Case Reportings

In the beginning we considered the possibility of something else than weekly aggre-

gation across the time axis, e. g. sliding window or exponential weighting. However,

judging from the distribution of weekdays it seems that most cases are reported on

Mondays (Figure 3.6). This gives rise to the assumption that relevant cases are

collected throughout the week in local health agencies and then collectively send

on Monday. Because of that, anything else than weekly aggregation does not really

make sense, as it would only artificially distort the data. Weekly aggregation seems

to be the finest resolution the data yields itself. As a good sign for the early re-

porting of cases, we find that the timing of reporting has changed over the course of

time. Considering only the cases from 2015 onwards, the distribution of reporting

timings is much more balanced, with the majority of cases still being reported on

Mondays (Figure 3.7). To be consistent with the majority of older data, we decided

to stick with weekly aggregation.

24

Monday
Tuesday

Wednesday
Thursday Friday

Saturday Sunday

weekday of reporting date

0

100000

200000

300000

400000

500000

600000

co
un

t

Figure 3.6: Distribution of weekdays of reporting since 2001.

Monday
Tuesday

Wednesday
Thursday Friday

Saturday Sunday

weekday of reporting date

0

2500

5000

7500

10000

12500

15000

17500

co
un

t

Figure 3.7: Distribution of weekdays of reporting since 2015.

25

3.2 Construction of the dataset

For the reasons described in Section 3.1 case records were aggregated weekly by

county and by pathogen subtype for the two diseases Salmonella and Campylobacter

respectively. To not run algorithms on many time series containing more or less no

data at all we filtered all resulting time series in their final state by the following

criteria:

• each time series needs to have its first case at least in the year 2004

• each time series needs to have its last case not earlier than in they year 2018

• each time series needs to contain at least two outbreaks between the beginning

of 2016 and the end of 2017

• each time series needs to have on average one case per 30 days

After filtering by those criteria 137 time series were left for Salmonella and 169

for Campylobacter. All time series were sorted alphabetically according to county

and pathogen subtype. For convenience reasons only the first 137 time series were

kept for Campylobacter.

When an outbreak detection algorithm was applied to a times series corresponding

to a filter combination, the time series was used in the following way: to get a

prediction for a certain week t the time series from 2004 to t−1 using the data state

from week t was used to fit the model to the data. Past cases known to be outbreak

cases at time t where removed from the weekly case counts, so the algorithms could

only fit the non-epidemic state. Then the data point at week t was used to predict

an outbreak. This way the time series grew one week longer for each consecutive

prediction.

The time between the beginning of 2016 and the end of 2017 was used for the

hyperparameter optimization. The time in 2018 were used for evaluation.

3.3 Optimization

BOHB was run with minimum budget bmin = 15, maximum budget bmax = 137 and

budget progression parameter η = 3 using five workers in parallel. Each optimization

was run for 100 iterations. A separate optimization was run for each algorithm on

each of the two diseases. Budgeting was implemented by only evaluating on the first

b time series, with b being the current budget. Because BOHB expects an evaluation

26

function that can be minimized we replaced the score defined in Section 2.5 with a

loss l(o,a) = 1− s(o,a). We used the mean of the losses for all time series used at

budget b as the final evaluation function.

For each outbreak detection algorithm we made the space of possible configura-

tions very broad. In cases where values had a clearly defined range, we used the

full range. For example we allowed the α threshold values to vary between 0 and 1.

For values where the range of possible values was not constrained, we allowed broad

variation around the default parameters. We used uniform priors for all hyperpa-

rameters when randomly sampled by BOHB. The exact configuration spaces for all

algorithms are summarized in Table 3.1 and Table 3.2.

To verify that the optimization worked as intended we looked at correlation across

different budgets. BOHB can only work if performance on lower budgets is indeed

indicative of performance on higher budgets i. e. losses should correlate across bud-

gets. As the authors of BOHB note1 correlations across budget should not be below

0.2. As Figure 3.8 shows correlations are much higher, so BOHB was suitable for

our problem.

46 137
budget

15

46

bu
dg

et

spearman = 0.610044
p = 0.000000

n = 100

spearman = 0.688976
p = 0.000007

n = 34

spearman = 0.807335
p = 0.000000

n = 67

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.8: Correlations across different budgets for a BOHB run with the Farring-
tonFlexible algorithm on Salmonella.

1https://automl.github.io/HpBandSter/build/html/best_practices.html

27

https://automl.github.io/HpBandSter/build/html/best_practices.html

Moreover, as Figure 3.9 shows, the losses do in fact decrease on average over time

and the TPE model learns to produce good configurations as Figure 3.10 shows.

0 50000 100000 150000 200000 250000
wall clock time [s]

2.0

2.5

3.0

3.5

4.0

4.5

lo
ss

b = 137
b = 46
b = 15

Figure 3.9: Losses over time for a BOHB run with the FarringtonFlexible algorithm
on Salmonella. The lines track the minimum loss observed on each bud-
get.

2 3 4
0

50

co
un

t

model based configurations
budget = 15 | n_runs = 177

2 3 4

random configurations
budget = 15 | n_runs = 129

2.0 2.5 3.0 3.5 4.0 4.5
0

50

co
un

t

budget = 45 | n_runs = 136

2.0 2.5 3.0 3.5 4.0 4.5

budget = 45 | n_runs = 63

2.0 2.5 3.0 3.5 4.0 4.5
loss

0

50

co
un

t

budget = 137 | n_runs = 119

2.0 2.5 3.0 3.5 4.0 4.5
loss

budget = 137 | n_runs = 47

Figure 3.10: Losses for random configurations and model based configurations across
different budgets for a BOHB run with the FarringtonFlexible algorithm
on Salmonella.

28

Table 3.1: Configuration spaces for hyperparameter optimization.

algorithm hyperparameter value space

EarsC{1, 2} alpha [0, 1]
baseline {3, . . . , 21}
min sigma [0, 3]

CDC years back {1, . . . , 6}
window half size 1, 10
alpha [0, 1]

RKI years back {1, . . . , 6}
window half size {1, . . . , 6}
include recent year {T, F}

Farrington years back {1, . . . , 6}
window half size {1, . . . , 10}
reweight {T, F}
alpha [0, 1]
trend {T, F}
past period cutoff {1, . . . , 20}
min cases in past periods {1, . . . , 20}
power transform {2/3, 1/2, none}

FarringtonFlexible years back {1, . . . , 6}
window half size {1, . . . , 10}
reweight {T, F}
weights threshold [0, 5]
alpha [0, 1]
trend {T, F}
trend threshold [0, 2]
past period cutoff {1, . . . , 20}
min cases in past periods {0, . . . , 20}
power transform {2/3, 1/2, none}
past weeks not included {1, . . . , 52}
threshold method {delta, nbPlugin, muan}

29

Table 3.2: Configuration spaces for hyperparameter optimization (continued).

algorithm hyperparameter value space

Cusum reference value [0, 3]
decision boundary [0, 10]
expected numbers method {glm, none}
transform {rossi, standard, anscombe,

anscombe2nd, pearsonNegBin,
anscombeNegBin, none}

nbin alpha [0, 3]
GLRPoisson glr test threshold {0, . . . , 10}

change {intercept, epi}
direction {inc, dec, {inc, dec}}
upperbound statistic {cases, value}

GLRNegativeBinomial alpha [0, 3]
glr test threshold {0, . . . , 10}
change {intercept, epi}
direction {inc, dec, {inc, dec}}
upperbound statistic {cases, value}
x max [0, 105]

OutbreakP threshold {0, . . . , 200}
upperbound statistic {cases, value}
max upperbound cases {103, . . . , 106}

Bayes years back {1, . . . , 6}
window half size {1, . . . , 10}
include recent year {T, F}
alpha [0, 1]

30

3.4 Performance

In this section we describe the influence of the hyperparameter optimization on

the performance of the different algorithms. We compare the performance of the

optimized configuration to the performance of the default configuration that are

recommended by the R surveillance package. As a representative for all algorithm

we look at the optimized scores and the overfitting for FarringtonFlexible in more

detail.

As described in Section 3.3 we used the loss derived from the score developed

in Section 2.5 as an optimization criterion. In the following, we mainly describe

algorithm performance in terms of the score itself. In the graphics the score is

denoted as “ghozzi score” in honor of its original proponent. In addition to the

‘ghozzi score” we collected several other binary classification metrics [39].

To get an estimate for the default configuration’s performance as a baseline and

the potential for optimization, we compared the default configuration’s mean score

to the top 10% of the optimized configurations. Figure 3.11 and Figure 3.12 ex-

emplify this comparison for FarringtonFlexible. The best optimized configurations’

performances show indeed improvement over the default configuration. However,

Campylobacter seems to pose a more difficult problem, as neither the default nor

the optimized performance is nearly as strong as for Salmonella. The scores for

Salmonella show that using the outbreak detection algorithm is better than never

sounding an alarm, which would achieve a score of -1, both for the default and

the optimized configurations. For Campylobacter the default configuration in fact

achieves a worse score than the policy of never sounding an alarm would achieve

(cf. Section 2.5). Optimization yields configurations that are slightly above that

baseline.

31

0.90 0.85 0.80 0.75
ghozzi score

0

2

4

6

8

co
un

t

de
fa

ul
t

Figure 3.11: Scores of the top-10% optimized configurations evaluated on full budget
for FarringtonFlexible on Salmonella compared to the default configu-
ration.

32

1.05 1 0.95
ghozzi score

0

5

10

15

co
un

t

de
fa

ul
t

Figure 3.12: Scores of the top-10% optimized configurations evaluated on full bud-
get for FarringtonFlexible on Campylobacter compared to the default
configuration.

We used the best score achieved on the training set to provide a ranking for

the different algorithms. For Salmonella we find that Farrington, Ears and Bayes

perform best. Cusum-based algorithms seem to perform worse, and the RKI and

CDC algorithms are last. Because the performance of OutbreakP is much worse for

both Salmonella and Campylobacter it is not considered in the further analyses.

33

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
score

CDC

RKI

GLRNegativeBinomial

GLRPoisson

Cusum

FarringtonFlexible

EarsC2

Bayes

EarsC1

Farrington

m
od

el

-1.00

-0.88

-0.82

-0.81

-0.77

-0.74

-0.74

-0.72

-0.72

-0.72

Figure 3.13: Ranking of algorithms for Salmonella based on the training set.

For Campylobacter the picture looks different. Farrington is still second best, but

the distance between GLM-based/Ears and Cusum-based approaches has vanished.

Bayes performs much worse compared to its performance on Salmonella. CDC still

shows the weakest performance.

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
score

CDC

Bayes

RKI

GLRPoisson

EarsC1

EarsC2

Cusum

GLRNegativeBinomial

Farrington

FarringtonFlexible

m
od

el

-1.14

-1.04

-0.99

-0.99

-0.98

-0.98

-0.97

-0.97

-0.96

-0.95

Figure 3.14: Ranking of algorithms for Campylobacter based on the training set.

Next we quantify the overfitting induced by the hyperparameter optimization. A

problem with hyperparameter optimization can be that, as now the hyperparameters

are learned as well, they overfit on the data the hyperparameter optimization used

34

for training. To estimate the overfitting we took the 10% best configurations on the

training set and evaluated them on the test set. We plot kernel density estimates

of the distribution of the means of all metrics for training and test set. The degree

by which the training distribution contains higher values than the test distributions

is an indicator of overfitting. While we show the distribution of all metrics here,

only the distribution of the optimized criterion (“ghozzi score”) determines whether

there is overfitting or not. For Salmonella there seems to be little overfitting as

the distributions for the training and test set largely overlap (Figure 3.15). For

Campylobacter indeed all configurations seem to have overfitted the training data,

even though the distributions are not extremely far apart (Figure 3.16).

0.0 0.2
0

5

10

15

20

de
ns

ity

F1

0.9650.9700.975
0

200

400

600

800

accuracy

0.6 0.8
0

10

20

30

40

balanced acc

0.8 1.0
0

2

4

6

8

10

de
ns

ity

false negative rate

0.00 0.01
0

50

100

150

200

false positive rate

0.9 0.8 0.7
0

5

10

15

ghozzi score

0.00 0.25
value

0

5

10

de
ns

ity

precision

0.0 0.2
value

0

5

10

15

sensitivity

0.99 1.00
value

0

50

100

150

200

specificity

subset
train
test

Figure 3.15: Kernel density estimate of distribution of different metrics on training
and test set for top-10% configurations on the training set for Farring-
tonFlexible on Salmonella. The optimization criterion is highlighted.

35

0.00 0.05
0

1000

2000

3000

de
ns

ity

F1

0.95 0.96 0.97
0

500

1000

1500

2000
accuracy

0.5 0.6 0.7
0

1000

2000

3000

balanced acc

0.975 1.000
0

50000

100000

150000

de
ns

ity

false negative rate

0.0000 0.0025
0

500

1000

1500

2000

false positive rate

1.1 1.0
0

20

40

60

ghozzi score

0.00 0.05
value

0

500

1000

de
ns

ity

precision

0.000 0.025
value

0

2000

4000

sensitivity

0.9975 1.0000
value

0

500

1000

1500

2000

specificity

subset
train
test

Figure 3.16: Kernel density estimate of distribution of different metrics on training
and test set for top-10% configurations on the training set for Far-
ringtonFlexible on Campylobacter. The optimization criterion is high-
lighted.

Finally, we look at the performance of the best configurations (selected based on

the performance on the training set) on the test set. In Figure 3.17 and Figure 3.18

we show the difference in mean validation score between the default configuration

and the best configuration on the training set for each algorithm. We see that the

improvements over the default configuration generalize to the test set in almost all

cases. The only exception is Farrington on Campylobacter which got a bit worse.

36

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
score difference compared to default configuration

Bayes

CDC

Cusum

EarsC1

EarsC2

Farrington

FarringtonFlexible

GLRNegativeBinomial

GLRPoisson

RKI

m
od

el

Figure 3.17: Improvement of the best configuration over the default configuration
for Salmonella. The best configuration was picked based on the per-
formance on the training set. The comparison with the default con-
figuration is based on the test set. Improvements are shown in blue,
deteriorations in red.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
score difference compared to default configuration

Bayes

CDC

Cusum

EarsC1

EarsC2

Farrington

FarringtonFlexible

GLRNegativeBinomial

GLRPoisson

RKI

m
od

el

Figure 3.18: Improvement of the best configuration over the default configuration
for Campylobacter. The best configuration was picked based on the
performance on the training set. The comparison with the default con-
figuration is based on the test set. Improvements are shown in blue,
deteriorations in red.

37

The same result is presented in Figure 3.19 and Figure 3.20 in a slightly different

way. As a separate score is produced for each of the 137 filter combinations used,

we in fact get a distribution of scores that we usually summarize with the mean. In

Figure 3.19 and Figure 3.20 we show the distribution of scores of the best optimized

and default configuration on the test set for each algorithm. Again we see that

optimization yielded notifiable improvements for almost all algorithms.

CDC RKI

GLRNegativeBinomial

GLRPoisson
Cusum

FarringtonFlexible
EarsC2

Bayes
EarsC1

Farrington

model

8

6

4

2

0

sc
or

e

configuration
default
optimized

Figure 3.19: Comparison of the score distribution for the best configuration and the
default configuration on Salmonella. Metrics are calculated on the test
set.

38

CDC
Bayes RKI

GLRPoisson
EarsC1

EarsC2
Cusum

GLRNegativeBinomial
Farrington

FarringtonFlexible

model

6

5

4

3

2

1

0

1

sc
or

e

configuration
default
optimized

Figure 3.20: Comparison of the score distribution for the best configuration and the
default configuration on Campylobacter. Metrics are calculated on the
test set.

3.5 Interpretation of Optimized Hyperparameters

In this section we exemplary look at the behavior of optimized parameters for EarsC1

and Farrington for Salmonella. We chose these algorithms as examples, because

EarsC1 benefitted the most from optimization and Farrington performed best on

Salmonella (Figure 3.17).

For EarsC1 there are two parameters of interest: alpha, that determines the

alerting threshold, and baseline, that determines how many past weeks are used to

form the estimate of the current week. We see in Figure 3.21a that the alerting

threshold was lowered and in Figure 3.21b we see that more weeks were taken into

account for optimized configurations. The min sigma parameter is not considered

here as it only takes effect when baseline = 0, which never is the case.

39

0 0.05 0.10
alpha

0

10

20

30

co
un

t de
fa

ul
t

(a) alpha

7 8 9 10 11
baseline

0

20

40

60

co
un

t

de
fa

ul
t

(b) baseline

Figure 3.21: Parameter distributions of the top-10% EarsC1 configurations on
Salmonella.

For Farrington we find that the parameters window half width, alpha,

power transform and min cases in past periods differ significantly from the de-

fault configuration. window half width which determines how many weeks around

the corresponding point in previous years are taken into account to estimate sea-

sonality is increased (Figure 3.22a). This signifies that it makes sense to use more

information to estimate seasonality. The alpha parameter is increased as well, which

should correspond to an increase in sensitivity (Figure 3.22b). All optimized models

use the variance stabilizing power transform instead of the default skewness correc-

tion power transform (Figure 3.22c). Finally, min cases in past periods is lowered.

This parameter is used for alarm suppression. If the number of cases in the past few

weeks does not exceed min cases in past periods then no alarm is raised. As the

time series for Salmonella are very sparse and characterized by low case numbers,

it only makes sense that this threshold is lowered as otherwise no alarm could ever

be raised (Figure 3.22d).

40

4 6 8 10
window half size

0

20

40

co
un

t

de
fa

ul
t

(a) window half size

0.025 0.050 0.075 0.100 0.125
alpha

0

2

4

6

8

co
un

t

de
fa

ul
t

(b) alpha

0 0.25 0.50 0.75 1
power transform

0

20

40

60

co
un

t

de
fa

ul
t

(c) power transform

0 1 2 3 4 5
min cases in past periods

0

10

20

30

co
un

t

de
fa

ul
t

(d) min cases in past periods

Figure 3.22: Parameter distributions for the top-10% Farrington configurations on
Salmonella that differ from the default configuration.

The parameters past period cutoff , trend and years back are very similar to the

default configuration. Like the default configuration almost all optimized configura-

tion do not include a trend (Figure 3.23b) and to only fit the last three years, ignor-

ing the older data (Figure 3.23c). The values for past period cutoff , i. e. how many

weeks are used to obtain the case count that has to exceedmin cases in past periods,

are distributed around the default value of four.

41

2.5 5 7.5 10 12.5
past period cutoff

0

5

10

co
un

t

de
fa

ul
t

(a) past period cutoff

False True
trend

0

20

40

60

co
un

t

de
fa

ul
t

(b) trend

2 2.25 2.50 2.75 3
years back

0

20

40

60

co
un

t

de
fa

ul
t

(c) years back

Figure 3.23: Parameter distributions for the top-10% Farrington configurations on
Salmonella that are similar to the default configuration.

Figure 3.24 summarizes the difference between default and optimized parameters

in a tSNE embedding [40] in a two-dimensional space. We see that the default con-

figuration is really on the edge of the subspace that the hyperparameter optimization

found to contain good configurations.

42

40 20 0 20 40 60
x

60

40

20

0

20

40

60

y configuration
optimized
default

Figure 3.24: tSNE embedding of parameter distributions of the top-10% Farrington
configurations on Salmonella.

3.6 Comparison to Baselines

To compare the outbreak detection algorithms to a simple baseline we used the fact

that a lot of outbreaks are already known in the week they are to be detected (cf.

Section 3.1.2). To find the best baseline we evaluated three different approaches:

predicting an outbreak if there is an outbreak in the current week, predicting an

outbreak if there is an outbreak in the past week and predicting an outbreak if there

is an outbreak in the current or the last week. We found that the best performance is

attained by only predicting outbreaks based on the current week for both Salmonella

and Campylobacter. We subsequently call this method the baseline. For Salmonella

the baseline achieves a score of −0.77 on the training set and −0.71 on the test

set. In comparison, the configuration selected by the hyperparameter optimization,

i. e. the best configuration for Farrington, achieves a score of −0.72 on the training

set and −0.73 on the test set. The performance of the baseline is very comparable

and even better on the test set.

For Campylobacter the baseline achieves a score of −0.66 on the training set and

−0.69 on the test set. In comparison, the configuration selected by the hyperparam-

eter optimization, here the best configuration for FarringtonFlexible, only achieves

a score of −0.95 on the training set and −1.08 on the test set.

43

3.7 Optimization and Interpretation of Different

Optimization Criteria

As the “ghozzi score” was developed based on assumptions about what would be

desireable properties of outbreak detection algorithms, it is hard to estimate what

exact influence it has on the behavior of outbreak detection algorithms when used as

an optimization criterion. We therefore recorded other common metrics for binary

classification alongside the “ghozzi score”. Figure 3.25 shows the development of

all these metrics over the course of the hyperparameter optimization. Each step

represents another model that was evaluated on the full budget. All curves were

smoothed using Loess smoothing [41]. The main interpretation of these curves is

that the “ghozzi score” constrains configurations to be highly specific. Sensitivity

can only increase up to around 0.1, while specificity stays at around 0.99. This

indicates that the punishment for false positives might be way to strong.

0.52

0.54

0.56

va
lu

e

balanced acc

0.05

0.10

F1

0.025

0.050

0.075

0.100

sensitivity

0.997

0.998

0.999

specificity

0.05

0.10

0.15

0.20

precision

0 100
step

0.96300

0.96325

0.96350

0.96375

0.96400

va
lu

e

accuracy

0 100
step

0.001

0.002

0.003
false positive rate

0 100
step

0.900

0.925

0.950

0.975

false negative rate

0 100
step

0.95

0.90

0.85

ghozzi score

0 100
step

0.90

0.85

0.80

0.75

0.70
global ghozzi score

Figure 3.25: Development of different metrics across the course of optimization
for optimizing the “ghozzi score” score for FarringtonFlexible on
Salmonella. The optimization criterion is highlighted.

The same conclusion can be drawn from Figure 3.26, which shows the correlation

of the mean metrics from all configurations evaluated on the full budget. Again

we see that the “ghozzi score” positively correlates with specificity, but negatively

correlates with sensitivity.

44

balanced acc F1

sensitiv
ity

specific
ity

precisi
on

accu
racy

false positiv
e rate

false negative rate

ghozzi
sco

re

global ghozzi
sco

re

balanced acc

F1

sensitivity

specificity

precision

accuracy

false positive rate

false negative rate

ghozzi score

global ghozzi score

1.0

0.5

0.0

0.5

1.0

Figure 3.26: Correlation matrix between metrics for FarringtonFlexible on
Salmonella.

Experimentally, we tried to optimize other criteria than the “ghozzi score”. A

very simple choice was to optimize the F1 score. Figure 3.27 shows the development

of different binary metrics for optimizing the F1 score. It can be seen that sensitivity

is strongly increased compared to the optimization based on the “ghozzi score” and

reaches values up to 0.34. Specificity is slightly reduced to around 0.96.

45

0.6475

0.6500

0.6525

0.6550

va
lu

e

balanced acc

0.24

0.26

0.28

F1

0.330

0.335

0.340

sensitivity

0.966

0.968

0.970

0.972

0.974 specificity

0.20

0.25

0.30

precision

0 100
step

0.940

0.942

0.944

0.946

0.948

va
lu

e
accuracy

0 100
step

0.026

0.028

0.030

0.032

0.034

false positive rate

0 100
step

0.660

0.665

0.670

false negative rate

0 100
step

1.7

1.6

1.5

1.4

ghozzi score

0 100
step

1.1

1.0

0.9
global ghozzi score

Figure 3.27: Development of different metrics across the course of optimization for
optimizing the F1 score. The optimization criterion is highlighted.

Finally, we optimized a weighted F1 score, where each sample was weighted by

the number of cases in the respective week (Figure 3.28). The results of optimizing

a case weighted F1 score go in the same direction as the results of optimization

the plain F1 score, but are even more pronounced. Sensitivity goes up to 0.5 and

specificity decreases to 0.92.

0.55

0.60

0.65

0.70

va
lu

e

balanced acc

0.21

0.22

0.23

0.24
F1

0.1

0.2

0.3

0.4

0.5 sensitivity

0.92

0.94

0.96

0.98

specificity

0.186

0.188

0.190

0.192

0.194
precision

0.90

0.92

0.94

va
lu

e

accuracy

0 50
step

0.02

0.04

0.06

0.08
false positive rate

0 50
step

0.5

0.6

0.7

0.8

0.9
false negative rate

0 50
step

3.0

2.5

2.0

1.5

ghozzi score

0 50
step

0.25

0.30

0.35
case weighted F1

0 50
step

2.00

1.75

1.50

1.25

1.00

va
lu

e

global ghozzi score

Figure 3.28: Development of different metrics across the course of optimization for
optimizing the case weighted F1 score. The optimization criterion is
highlighted.

46

While these results sound promising, we found after visual inspection that opti-

mizing F1 scores leads to configurations that almost always predict outbreaks, when

there are at least a few cases in the respective week. The high numbers for specificity

are misleading, because the metric is calculated over all weeks, but many weeks con-

tain no cases. Weeks without cases are easy to classify correctly for every outbreak

detection algorithm.

47

4 Conclusion

This study demonstrates how a framework for a fair comparison of outbreak detec-

tion algorithms should look like. While all the parts are in place, all components

require more consideration and fine tuning.

We showed that it is possible to apply hyperparameter optimization to outbreak

detection algorithms and reliably obtain generalizable improvement. However, we

found that no optimized configuration is better than a simple baseline, that utilizes

information about outbreaks available in the current week. Given these findings, we

should rethink what information is communicated to the consumers of the generated

signals, i. e. epidemiologist and others responsible for public health, and how we

optimize our models towards the needs of those consumers. It should be considered

whether a signal should always be raised if there are outbreak cases present in the

current week. If that is not desired we need to redefine what exactly constitutes a

label for a desired signal. One possibility would be to only do the labeling based

on outbreaks that at least include a certain number of cases. This could make

sense as larger outbreaks pose a stronger threat to public health as small outbreaks

that only contain a few cases. In general, it would make sense to not only label

epidemiological outbreaks, but also public health risks directly by experts to improve

the applicability of supervised learning methods. This could be incorporated by

giving the consumers of the generated signals the ability to directly mark signals as

useful.

We developed a score that summarizes outbreak detection performance in a single

number. However, optimizing this score leads to configurations that show very low

sensitivity. This could be rooted in the fact that the score is unbounded towards

negative infinity, so that punishment for to many false positives add up too strongly.

Going back to a probabilistic interpretation, one could consider utilizing variants of

proper scoring rules [42] as was done by Enki et al. [5]. Another interesting direction

is cost-sensitive learning [43, 44]. In cost-sensitive learning different misclassifica-

tion can have different cost, depending on the type of misclassification. Additionally,

other types of cost can be incorporated. While weighting missing an outbreak dif-

48

ferently than falsely predicting an outbreak was already done in the “ghozzi score”,

it was done without regard to the theory behind cost-sensitive learning. Moreover,

external cost factors, such as whether the burden of disease surpasses the public

health capabilities could be incorporated in a consistent fashion.

A comparison with existing evaluation studies is difficult because of the different

metrics, parameters and data used. However, some common binary classification

metrics can still be compared. The study that comes closest to our approach is

probably Bédubourg & Le Strat [6], as they also compare outbreak detection al-

gorithms from the surveillance package, but using simulated instead of real data.

Bédubourg & Le Strat [6] find sensitivity of evaluated algorithms to vary between

0.2 and 0.8 and specificity to vary mostly between 0.8 and 1. On our real data we

found specificity to be always high, but sensitivity to be much lower, even for the

default configurations. Enki et al. [5] follow a similar approach as Bédubourg & Le

Strat [6]. While Enki et al. [5] start with real data, their identification of outbreaks

is ultimately based on assumptions about the statistical processes that govern epi-

demics and not on expert labels. Amongst other metrics they measure false positive

rate and find it to vary from 0.01 for time series with little background up to 0.25

for time series with many background cases. In our results the false positive rate

always stays very low irregardless of the background. This comparison suggest that

the performance of outbreak detection algorithms on real expert labeled data can

not easily be inferred from simulation studies.

The relatively weak performance of well established outbreak detection algorithms

on real data suggests that the approach of detecting outbreaks on univariate time

series of case counts is too limited. The information contained in univariate time se-

ries might simply be not sufficient to recover expert labeled outbreaks. As discussed

in Section 1.3 epidemiologists work on single case records that contain complex fea-

tures. To close the gap between experts’ practice and automated surveillance, the

design of outbreak detection algorithms that operate on the same kind of data should

be explored. The formalization in Section 1.3 is a first step in this direction. While

case based outbreak detection has not been widely used in the surveillance commu-

nity, the use of multivariate time series has long been advocated [19]. Models based

on multivariate time series can be easy extensions of established techniques, while

allowing for the incorporation of additional information, such as patient features or

data from event-based surveillance, such as Google Trends [45]. Future work should

explore both directions to overcome the limitation of the current approaches.

49

Acknowledgements

While this thesis mostly speaks of “we”, this being a thesis and “we” being mostly

“I”, I want to thank the persons without whom this work would have hardly been

possible. Firstly, I want to thank the Signale team for providing a welcoming at-

mosphere and many interesting games of table soccer. I want to especially thank

Stéphane Ghozzi and Alexander Ullrich for supervising my thesis and, together with

Auss Abbood, for many insightful discussions. In this respect I also want to thank

Auss Abbood for many fun discussions during the time in the office. Finally, I want

to express particular gratefulness to Conny and Hans for housing me during my time

in Berlin.

50

Glossary

EI Epidemic Intelligence

EWAR Early Warning and Response

GLMs Generalized Linear Models

IBS Indicator-Based Surveillance

RKI Robert Koch Institute

TPE Tree-structured Parzen Estimators

WHO World Health Organization

51

5 Bibliography

1. World Health Organization. Implementation of Early Warning and Response

with a focus on Event-Based Surveillance tech. rep. (2014), 1–64.

2. Merianos, A. & Peiris, M. International Health Regulations (2005) https :

//apps.who.int/iris/bitstream/handle/10665/43883/9789241580410%

7B % 5C _ %7Deng . pdf ; jsessionid = 9AE2446AA7CE0E7589193397F345914B ?

sequence=1.

3. Niemer, U. Das neue Infektionsschutzgesetz (IfSG). Das Gesundheitswesen 63,

136–138 (Aug. 2002).

4. Heudorf, U., Eikmann, T. & Exner, M. Rückblick auf 10 Jahre Infektionss-

chutzgesetz. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitss-

chutz 56, 455–465 (Mar. 2013).

5. Enki, D. G. et al. Comparison of statistical algorithms for the detection of

infectious disease outbreaks in large multiple surveillance systems. PLoS ONE

11 (ed Schanzer, D. L.) e0160759 (Aug. 2016).

6. Bédubourg, G. & Le Strat, Y. Evaluation and comparison of statistical methods

for early temporal detection of outbreaks: A simulation-based study. PLoS

ONE 12 (ed Olson, D. R.) e0181227 (July 2017).

7. Jafarpour, N., Izadi, M., Precup, D. & Buckeridge, D. L. Quantifying the de-

terminants of outbreak detection performance through simulation and machine

learning. Journal of Biomedical Informatics 53, 180–187 (Feb. 2015).

8. Wang, X. et al. Comparing early outbreak detection algorithms based on their

optimized parameter values. Journal of Biomedical Informatics 43, 97–103

(Feb. 2010).

9. World Health Organization. Communicable disease surveillance and response

systems - Guide to monitoring and evaluating. WHO, 90 (2006).

10. Salmon, M. et al. A system for automated outbreak detection of communicable

diseases in Germany. Eurosurveillance 21, 1 (2016).

52

https://apps.who.int/iris/bitstream/handle/10665/43883/9789241580410%7B%5C_%7Deng.pdf;jsessionid=9AE2446AA7CE0E7589193397F345914B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/43883/9789241580410%7B%5C_%7Deng.pdf;jsessionid=9AE2446AA7CE0E7589193397F345914B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/43883/9789241580410%7B%5C_%7Deng.pdf;jsessionid=9AE2446AA7CE0E7589193397F345914B?sequence=1
https://apps.who.int/iris/bitstream/handle/10665/43883/9789241580410%7B%5C_%7Deng.pdf;jsessionid=9AE2446AA7CE0E7589193397F345914B?sequence=1

11. Salmon, M. Advances in Count Time Series Monitoring for Public Health

Surveillance PhD thesis (Ludwig–Maximilians–Universität München, 2016),

134.

12. Noufaily, A. et al. An improved algorithm for outbreak detection in multiple

surveillance systems. Statistics in Medicine 32, 1206–1222 (2013).

13. Ghozzi, S. RKI - Signale - Early Warning System https://www.rki.de/EN/

Content/infections/epidemiology/signals/signals%7B%5C_%7Dnode.

html (2019).

14. World Health Organisation. WHO — Disease outbreaks https://www.who.

int/environmental%7B%5C_%7Dhealth%7B%5C_%7Demergencies/disease%

7B%5C_%7Doutbreaks/en/ (2019).

15. Brady, O. J., Smith, D. L., Scott, T. W. & Hay, S. I. Dengue disease outbreak

definitions are implicitly variable. Epidemics 11, 92–102 (June 2015).

16. Australian Government Department of Health. Department of Health — Chap-

ter 6: Outbreaks and case definitions http://www.health.gov.au/internet/

publications/publishing.nsf/Content/cda- cdna- norovirus.htm- l%

7B~%7Dcda-cdna-norovirus.htm-l-6 (2019).

17. Ester, M., Hans-Peter, K., Jorg, S. & Xiaowei, X. Density-Based Clustering

Algorithms for Discovering Clusters. Comprehensive Chemometrics 2, 635–

654 (2010).

18. Dietterich, T. G. Machine Learning for Sequential Data: A Review in Joint

IAPR international workshops on statistical techniques in pattern recognition

(SPR) and structural and syntactic pattern recognition (SSPR) (Springer, Berlin,

Heidelberg, 2002), 15–30. doi:10.1007/3-540-70659-3_2.

19. Unkel, S., Farrington, C., Garthwaite, P., Robetson, C. & Andrews, N. Sta-

tistical models for the detection of infectious disease outbreaks: a review. J R

Statist Soc A 175, 49–82 (2012).

20. Salmon, M., Schumacher, D. & Höhle, M. Monitoring Count Time Series in

R : Aberration Detection in Public Health Surveillance. Journal of Statistical

Software 70. doi:10.18637/jss.v070.i10 (2016).

21. Chandola, V., Banerjee, A. & Kumar, V. Anomaly detection. ACM Computing

Surveys 41, 1–58 (July 2009).

53

https://www.rki.de/EN/Content/infections/epidemiology/signals/signals%7B%5C_%7Dnode.html
https://www.rki.de/EN/Content/infections/epidemiology/signals/signals%7B%5C_%7Dnode.html
https://www.rki.de/EN/Content/infections/epidemiology/signals/signals%7B%5C_%7Dnode.html
https://www.who.int/environmental%7B%5C_%7Dhealth%7B%5C_%7Demergencies/disease%7B%5C_%7Doutbreaks/en/
https://www.who.int/environmental%7B%5C_%7Dhealth%7B%5C_%7Demergencies/disease%7B%5C_%7Doutbreaks/en/
https://www.who.int/environmental%7B%5C_%7Dhealth%7B%5C_%7Demergencies/disease%7B%5C_%7Doutbreaks/en/
http://www.health.gov.au/internet/publications/publishing.nsf/Content/cda-cdna-norovirus.htm-l%7B~%7Dcda-cdna-norovirus.htm-l-6
http://www.health.gov.au/internet/publications/publishing.nsf/Content/cda-cdna-norovirus.htm-l%7B~%7Dcda-cdna-norovirus.htm-l-6
http://www.health.gov.au/internet/publications/publishing.nsf/Content/cda-cdna-norovirus.htm-l%7B~%7Dcda-cdna-norovirus.htm-l-6
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.18637/jss.v070.i10

22. Hutwagner, L., Thompson, W., Seeman, G. M. & Treadwell, T. The bioterror-

ism preparedness and response Early Aberration Reporting System (EARS).

Journal of urban health : bulletin of the New York Academy of Medicine 80,

i89–i96 (2003).

23. Stroup, D. F., Williamson, G. D., Herndon, J. L. & Karon, J. M. DETECTION

OF ABERRATIONS IN THE OCCURRENCE OF NOTIFIABLE DISEASES

SURVEILLANCE DATA tech. rep. (1989), 323–329.

24. Farrington, C. P., Andrews, N. J., Beale, A. D. & Catchpole, M. A. A Statistical

Algorithm for the Early Detection of Outbreaks of Infectious Disease. Journal

of the Royal Statistical Society. Series A (Statistics in Society) 159, 547 (1996).

25. Oakland, J. S. Statistical Process Control: Sixth Edition 1–458. doi:10.4324/

9780080551739 (Routledge, Sept. 2007).

26. Rossi, G., Lampugnani, L. & Marchi, M. an Approximate Cusum Procedure

for. Statistics in Medicine 2122, 2111–2122 (1999).

27. Höhle, M. Höhle: Poisson regression charts for the monitoring of surveillance

time series Projektpartner Poisson regression charts for the monitoring of surveil-

lance time series tech. rep. (2006).

28. Höhle, M. & Paul, M. Count data regression charts for the monitoring of surveil-

lance time series. Computational Statistics and Data Analysis 52, 4357–4368

(May 2008).

29. Frisén, M., Andersson, E. & Schiöler, L. Robust outbreak surveillance of epi-

demics in Sweden. Statistics in Medicine 28, 476–493 (2009).

30. Höhle, M. Surveillance: An R package for the monitoring of infectious diseases.

Computational Statistics 22, 571–582 (2007).

31. Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for Hyper-Parameter

Optimization in Proceedings of Neural Information Processing Systems (NIPS),

2011 (2011), 1–9. doi:2012arXiv1206.2944S.

32. Falkner, S., Klein, A. & Hutter, F. BOHB: Robust and Efficient Hyperparam-

eter Optimization at Scale (2018).

33. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. HY-

PERBAND : BANDIT - BASED CONFIGURATION EVALUATION FOR

HYPERPARAMETER OPTIMIZATION. ICLR, 1–15 (2017).

54

http://dx.doi.org/10.4324/9780080551739
http://dx.doi.org/10.4324/9780080551739
http://dx.doi.org/2012arXiv1206.2944S

34. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. Hyper-

band: A Novel Bandit-Based Approach to Hyperparameter Optimization. Jour-

nal of Machine Learning Research 18, 1–52 (2016).

35. Buitinck, L. et al. API design for machine learning software: experiences from

the scikit-learn project (Sept. 2013).

36. Mckinney, W. Data Structures for Statistical Computing in Python in PROC.

OF THE 9th PYTHON IN SCIENCE CONF (2010), 51.

37. Taylor, S. J. & Letham, B. Forecasting at Scale. American Statistician 72,

37–45 (Jan. 2018).

38. Greff, K., Klein, A., Chovanec, M., Hutter, F. & Schmidhuber, J. The Sacred

Infrastructure for Computational Research in Proceedings of the 16th Python in

Science Conference (SciPy, 2017), 49–56. doi:10.25080/shinma-7f4c6e7-008.

39. M, H. & M.N, S. A Review on Evaluation Metrics for Data Classification

Evaluations. International Journal of Data Mining & Knowledge Management

Process 5, 01–11 (2015).

40. Van Der Maaten, L. J. P. & Hinton, G. E. Visualizing high-dimensional data

using t-sne. Journal of Machine Learning Research 9, 2579–2605 (2008).

41. Jacoby, W. G. Loess: a nonparametric, graphical tool for depicting relationships

between variables. Electoral Studies 19, 577–613 (Dec. 2000).

42. Czado, C., Gneiting, T. & Held, L. Predictive model assessment for count data.

Biometrics 65, 1254–1261 (Dec. 2009).

43. Zhou, Z.-H. in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 17–18

(Springer US, Boston, MA, 2011). doi:10.1007/978-3-642-22589-5_2.

44. Elkan, C. The foundations of cost-sensitive learning in IJCAI International

Joint Conference on Artificial Intelligence (2001), 973–978.

45. Pervaiz, F., Pervaiz, M., Rehman, N. A. & Saif, U. FluBreaks: Early epidemic

detection from google flu trends. Journal of Medical Internet Research 14.

doi:10.2196/jmir.2102 (2012).

55

http://dx.doi.org/10.25080/shinma-7f4c6e7-008
http://dx.doi.org/10.1007/978-3-642-22589-5_2
http://dx.doi.org/10.2196/jmir.2102

	Introduction
	Motivation and Objective
	The Surveillance System at the RKI
	Formalizing the Outbreak Detection Problem

	Methods
	Outbreak Detection Algorithms
	Window-based Approaches
	GLM-based Approaches
	Cusum-based Approaches

	Hyperparameter Optimization
	Implementation
	IT Infrastructure at the RKI
	Scoring

	Results and Discussion
	Exploratory Analysis
	Reporting Delay
	Labeling Delay
	Outbreak spread
	Timing of Case Reportings

	Construction of the dataset
	Optimization
	Performance
	Interpretation of Optimized Hyperparameters
	Comparison to Baselines
	Optimization and Interpretation of Different Optimization Criteria

	Conclusion
	Bibliography

